全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA模型和残差自回归模型的广东省鸡蛋价格分析及预测
Analysis and Prediction of Egg Price in Guangdong Province Based on ARIMA Model and Auto-Regressive Model

DOI: 10.12677/sa.2024.132036, PP. 360-374

Keywords: 广东省鸡蛋价格,ARIMA模型,残差自回归模型,预测
Guangdong Egg Price
, ARIMA Model, Auto-Regressive Model, Forecast

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于中国畜牧业年鉴的广东省鸡蛋价格,构建了ARIMA模型和残差自回归模型。根据模型理论依据、评价指标,例如拟合优度、均方误差、平均绝对误差、信息准则等选择最优模型预测鸡蛋价格。本文得出最优的预测模型是乘积季节模型。利用该模型测出广东省未来的鸡蛋价格,同时对政府、养殖者、投资者和消费者四大主体提出相应的实际建议。本文不仅丰富了鸡蛋价格预测的理论基础,而且为相关主体的决策提供了有价值的参考依据。
Based on the egg price of Guangdong province in the China Animal Husbandry Yearbook, the ARIMA model and the auto-regressive model are constructed in this paper. According to the theoretical basis of the model and evaluation indicators, such as goodness of fit, mean square error, mean absolute error and information criteria, the optimal model is selected to predict egg price. The optimal forecasting model is the product season model . The model is used to measure the future price of eggs in Guangdong Province, and some practical suggestions are put forward for the government, breeders, investors and consumers. This paper not only enriched the theoretical basis of egg price forecasting but also provided a valuable reference for the decision-making of related subjects.

References

[1]  周荣柱, 秦富. 蛋鸡生产与鸡蛋价格动态变化关系[J]. 中国农业大学学报, 2016, 21(10): 145-154.
[2]  武嘉平. 浅谈鸡蛋价格波动的影响因素及对策[J]. 畜牧与兽医, 2009, 41(7): 91-93.
[3]  李雪莹, 武翔宇. 鸡蛋期货价格影响因素分析[J]. 农业经济, 2019(10): 121-123.
[4]  汤路昀, 祁春节. 中国鸡蛋价格波动的空间效应及分解——基于多重权重的实证检验[J]. 统计与决策, 2020, 36(7): 46-52.
[5]  刘诗博, 李作臣, 王旭有. 基于Census X12模型的鸡蛋价格年内波动规律分析[J]. 当代畜禽养殖业, 2022(2): 29-30.
[6]  宋淑婷. 鸡蛋价格波动规律与原因探析[J]. 农业展望, 2012, 8(9): 21-23.
[7]  王舒鸿. 灰色预测模型在鸡蛋价格预测中的应用[J]. 中国禽业导刊, 2008(15): 48-50.
[8]  刘雪, 刘锦涛, 李佳利, 等. 基于季节分解和长短期记忆的北京市鸡蛋价格预测[J]. 农业工程学报, 2020, 36(9): 331-340.
[9]  李哲敏, 李干琼. 禽蛋市场价格及其短期预测因子分析[J]. 中国食物与营养, 2009(12): 36-39.
[10]  刘林静, 楼文高. GRNN模型在鸡蛋价格预测方面的应用[J]. 中国集体经济, 2014(36): 66-67.
[11]  附 录
[12]  Table A1. Raw data
[13]  附表A1. 原始数据
[14]  续表

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133