全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

儿童支气管肺发育不良与成年期慢性肺部疾病关系研究进展
Research Progress on the Relationship between Bronchopulmonary Dysplasia in Children and Chronic Lung Diseases in Adulthood

DOI: 10.12677/acm.2024.1441164, PP. 1330-1336

Keywords: 支气管肺发育不良,哮喘,慢性阻塞性肺疾病,肺动脉高压
Bronchopulmonary Dysplasia
, Asthma, Chronic Obstructive Pulmonary Disease, Pulmonary Hypertension

Full-Text   Cite this paper   Add to My Lib

Abstract:

支气管肺发育不良是一种慢性肺疾病,近年来随着早产儿存活率的上升,支气管肺发育不良的发生呈现一个上升趋势。研究发现,支气管肺发育不良患儿远期可能有气体交换和气道高反应性等表现,部分支气管肺发育不良患儿成年后有肺功能受损及运动耐受下降。肺动脉高压的发生使早产儿易发生支气管肺发育不良。支气管肺发育不良与哮喘、慢性阻塞性肺疾病及肺动脉高压之间似乎有一定的相关性,但这些说法尚存在一定争议。本文对近年来支气管肺发育不良与哮喘、慢性阻塞性肺疾病及肺动脉高压之间的关系的研究进展进行综述,为支气管肺发育不良患儿远期预后的防治及研究提供思路。
Bronchopulmonary dysplasia is a chronic lung disease, with the increase of survival rate of premature infants in recent years, the incidence of bronchopulmonary dysplasia showed an upward trend. The study found that children with bronchopulmonary dysplasia may have long-term gas exchange and airway hyperresponsiveness, and some children with bronchopulmonary dysplasia have impaired lung function and decreased exercise tolerance in adulthood. The occurrence of pulmonary hypertension makes premature infants prone to bronchopulmonary dysplasia. There seems to be a certain correlation between bronchopulmonary dysplasia and asthma, chronic obstructive pulmonary disease and pulmonary hypertension, but these claims are still controversial. This article reviews the research progress on the relationship among bronchopulmonary dysplasia and asthma, chronic obstructive pulmonary disease and pulmonary hypertension in recent years, in order to provide ideas for the prevention and treatment of long-term prognosis of children with bronchopulmonary dysplasia.

References

[1]  Higgins, R.D., Jobe, A.H., Koso-Thomas, M., et al. (2018) Bronchopulmonary Dysplasia: Executive Summary of a Workshop. The Journal of Pediatrics, 197, 300-308.
https://doi.org/10.1016/j.jpeds.2018.01.043
[2]  Bancalari, E. and Jain, D. (2019) Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology, 115, 384-391.
https://doi.org/10.1159/000497422
[3]  周纯, 谭玲. 学龄期儿童支气管肺发育不良与哮喘的异同研究[J]. 中国妇幼保健, 2020, 35(6): 1078-1080.
[4]  Gilfillan, M., Bhandari, A. and Bhandari, V. (2021) Diagnosis and Management of Bronchopulmonary Dysplasia. The BMJ, 375, n1974.
https://doi.org/10.1136/bmj.n1974
[5]  Been, J.V., Lugtenberg, M.J., Smets, E., et al. (2014) Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis. PLOS Medicine, 11, e1001596.
https://doi.org/10.1371/journal.pmed.1001596
[6]  Moore, P.E., Church, T.L., Chism, D.D., et al. (2002) IL-13 and IL-4 Cause Eotaxin Release in Human Airway Smooth Muscle Cells: A Role for ERK. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282, L847-L853.
https://doi.org/10.1152/ajplung.00245.2001
[7]  Deng, Y., Zhang, Y., Wu, H., et al. (2017) Knockdown of FSTL1 Inhibits PDGF-BB-Induced Human Airway Smooth Muscle Cell Proliferation and Migration. Molecular Medicine Reports, 15, 3859-3864.
https://doi.org/10.3892/mmr.2017.6439
[8]  Johnson, P.R., Roth, M., Tamm, M., et al. (2001) Airway Smooth Muscle Cell Proliferation Is Increased in Asthma. American Journal of Respiratory and Critical Care Medicine, 164, 474-477.
https://doi.org/10.1164/ajrccm.164.3.2010109
[9]  Nordlund, B., James, A., Ebersj?, C., et al. (2017) Differences and Similarities between Bronchopulmonary Dysplasia and Asthma in Schoolchildren. Pediatric Pulmonology, 52, 1179-1186.
https://doi.org/10.1002/ppul.23741
[10]  Hadchouel, A., Marchand-Martin, L., Franco-Montoya, M.L., et al. (2015) Salivary Telomere Length and Lung Function in Adolescents Born Very Preterm: A Prospective Multicenter Study. PLOS ONE, 10, e0136123.
https://doi.org/10.1371/journal.pone.0136123
[11]  Henckel, E., Svenson, U., Nordlund, B., et al. (2018) Telomere Length Was Similar in School-Age Children with Bronchopulmonary Dysplasia and Allergic Asthma. Acta Paediatrica, 107, 1395-1401.
https://doi.org/10.1111/apa.14294
[12]  Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24, Article 1583.
https://doi.org/10.3390/molecules24081583
[13]  Xavier-Elsas, P., Vieira, B.M., Masid-de-Brito, D., et al. (2019) The Need to Consider Context in the Evaluation of Anti-Infectious and Immunomodulatory Effects of Vitamin A and Its Derivatives. Current Drug Targets, 20, 871-878.
https://doi.org/10.2174/1389450120666181217095323
[14]  Samarasinghe, A.E., Penkert, R.R., Hurwitz, J.L., et al. (2020) Questioning Cause and Effect: Children with Severe Asthma Exhibit High Levels of Inflammatory Biomarkers Including Beta-Hexosaminidase, but Low Levels of Vitamin A and Immunoglobulins. Biomedicines, 8, Article 393.
https://doi.org/10.3390/biomedicines8100393
[15]  Talaei, M., Hughes, D.A., Mahmoud, O., et al. (2021) Dietary Intake of Vitamin A, Lung Function and Incident Asthma in Childhood. European Respiratory Journal, 58, Article 2004407.
https://doi.org/10.1183/13993003.04407-2020
[16]  Jensen, E.A., Roberts, R.S. and Schmidt, B. (2020) Drugs to Prevent Bronchopulmonary Dysplasia: Effect of Baseline Risk on the Number Needed to Treat. The Journal of Pediatrics, 222, 244-247.
https://doi.org/10.1016/j.jpeds.2020.01.070
[17]  Naeem, A., Ahmed, I. and Silveyra, P. (2019) Editor’s Pick: Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. European Medical Journal, 4, 20-29.
https://doi.org/10.33590/emj/10313109
[18]  Ding, Y., Chen, Z. and Lu, Y. (2021) Vitamin A Supplementation Prevents the Bronchopulmonary Dysplasia in Premature Infants: A Systematic Review and Meta-Analysis. Medicine, 100, e23101.
https://doi.org/10.1097/MD.0000000000023101
[19]  Tolia, V.N., Murthy, K., McKinley, P.S., et al. (2014) The Effect of the National Shortage of Vitamin A on Death or Chronic Lung Disease in Extremely Low-Birth-Weight Infants. JAMA Pediatrics, 168, 1039-1044.
https://doi.org/10.1001/jamapediatrics.2014.1353
[20]  Fabian, E., P?l?skey, P., Kósa, L., et al. (2013) Nutritional Supplements and Plasma Antioxidants in Childhood Asthma. Wiener klinische Wochenschrift, 125, 309-315.
https://doi.org/10.1007/s00508-013-0359-6
[21]  Mostafa-Gharehbaghi, M., Mostafa-Gharabaghi, P., Ghanbari, F., et al. (2012) Determination of Selenium in Serum Samples of Preterm Newborn Infants with Bronchopulmonary Dysplasia Using a Validated Hydride Generation System. Biological Trace Element Research, 147, 1-7.
https://doi.org/10.1007/s12011-011-9270-z
[22]  Wang, Z., Li, W., Guo, Q., et al. (2018) Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BioMed Research International, 2018, Article ID: 6057589.
https://doi.org/10.1155/2018/6057589
[23]  Gorgisen, G., Aydin, M., Mboma, O., et al. (2022) The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. International Journal of Molecular Sciences, 23, Article 10113.
https://doi.org/10.3390/ijms231710113
[24]  Andrea, M., Susanna, B., Francesca, N., et al. (2021) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 17, 63-71.
https://doi.org/10.1080/1744666X.2020.1860755
[25]  Wu, W.J., Wang, S.H., Wu, C.C., et al. (2021) IL-4 and IL-13 Promote Proliferation of Mammary Epithelial Cells through STAT6 and IRS-1. International Journal of Molecular Sciences, 22, Article 12008.
https://doi.org/10.3390/ijms222112008
[26]  Lambrecht, B.N., Hammad, H. and Fahy, J.V. (2019) The Cytokines of Asthma. Immunity, 50, 975-991.
https://doi.org/10.1016/j.immuni.2019.03.018
[27]  Liu, Q., Gao, Y. and Ci, X. (2019) Role of Nrf2 and Its Activators in Respiratory Diseases. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7090534.
https://doi.org/10.1155/2019/7090534
[28]  McGrath-Morrow, S., Lauer, T., Yee, M., et al. (2009) Nrf2 Increases Survival and Attenuates Alveolar Growth Inhibition in Neonatal Mice Exposed to Hyperoxia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 296, L565-L573.
https://doi.org/10.1152/ajplung.90487.2008
[29]  Cho, H.Y., van Houten, B., Wang, X., et al. (2012) Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice. Antioxidants & Redox Signaling, 17, 1066-1082.
https://doi.org/10.1089/ars.2011.4288
[30]  Zhang, X., Chu, X., Gong, X., et al. (2020) The Expression of miR-125b in Nrf2-Silenced A549 Cells Exposed to Hyperoxia and Its Relationship with Apoptosis. Journal of Cellular and Molecular Medicine, 24, 965-972.
https://doi.org/10.1111/jcmm.14808
[31]  Li, N., Wang, M., Barajas, B., et al. (2013) Nrf2 Deficiency in Dendritic Cells Enhances the Adjuvant Effect of Ambient Ultrafine Particles on Allergic Sensitization. Journal of Innate Immunity, 5, 543-554.
https://doi.org/10.1159/000347060
[32]  Huo, R., Tian, X., Chang, Q., et al. (2021) Targeted Inhibition of β-Catenin Alleviates Airway Inflammation and Remodeling in Asthma via Modulating the Profibrotic and Anti-Inflammatory Actions of Transforming Growth Factor-β1. Therapeutic Advances in Respiratory Disease, 15.
https://doi.org/10.1177/1753466620981858
[33]  Liu, G., Philp, A.M., Corte, T., et al. (2021) Therapeutic Targets in Lung Tissue Remodelling and Fibrosis. Pharmacology & Therapeutics, 225, Article 107839.
https://doi.org/10.1016/j.pharmthera.2021.107839
[34]  Xing, Y.M., Li, P.S. and Liu, Y. (2022) 1,25-(OH)2D3 Participates and Modulates Airway Remodeling by Reducing MGP and TGF-β1 Expression in TNF-α-Induced Airway Smooth Muscle Cells. Advances in Clinical and Experimental Medicine, 31, 151-155.
https://doi.org/10.17219/acem/142067
[35]  Kunzmann, S., Ottensmeier, B., Speer, C.P., et al. (2018) Effect of Progesterone on Smad Signaling and TGF-β/Smad-Regulated Genes in Lung Epithelial Cells. PLOS ONE, 13, e0200661.
https://doi.org/10.1371/journal.pone.0200661
[36]  Aly, H., Mansi, Y., Ez El Din, Z., et al. (2019) Mesenchymal Stromal Cells and TGF-β1 in Tracheal Aspirate of Premature Infants: Early Predictors for Bronchopulmonary Dysplasia? Journal of Perinatal Medicine, 47, 470-477.
https://doi.org/10.1515/jpm-2018-0305
[37]  Rai, N. and D’Armiento, J. (2022) Wingless/Integrase-1 Signaling in Allergic Asthma and Pediatric Lung Diseases. Current Opinion in Pediatrics, 34, 572-579.
https://doi.org/10.1097/MOP.0000000000001173
[38]  Sharma, S., Tantisira, K., Carey, V., et al. (2010) A Role for Wnt Signaling Genes in the Pathogenesis of Impaired Lung Function in Asthma. American Journal of Respiratory and Critical Care Medicine, 181, 328-336.
https://doi.org/10.1164/rccm.200907-1009OC
[39]  Li, J., Yu, K.H., Oehlert, J., et al. (2015) Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 192, 589-596.
https://doi.org/10.1164/rccm.201501-0168OC
[40]  Riccetti, M.R., Ushakumary, M.G., Waltamath, M., et al. (2022) Maladaptive Functional Changes in Alveolar Fibroblasts due to Perinatal Hyperoxia Impair Epithelial Differentiation. JCI Insight, 7, e152404.
https://doi.org/10.1172/jci.insight.152404
[41]  Malloy, K.W. and Austin, E.D. (2021) Pulmonary Hypertension in the Child with Bronchopulmonary Dysplasia. Pediatric Pulmonology, 56, 3546-3556.
https://doi.org/10.1002/ppul.25602
[42]  Hansmann, G., Sallmon, H., Roehr, C.C., et al. (2021) European Pediatric Pulmonary Vascular Disease Network (EPPVDN). Pulmonary Hypertension in Bronchopulmonary Dysplasia. Pediatric Research, 89, 446-455.
https://doi.org/10.1038/s41390-020-0993-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133