|
活性氧在皮肤衰老中的作用
|
Abstract:
皮肤作为人体最大的器官,能够直观地反映机体整体的衰老水平。皮肤衰老可分为内源性衰老和外源性衰老,其细胞水平的主要表现是真皮层内成纤维细胞的老化,而其中ROS发挥着关键作用。ROS引起细胞老化的主要机制包括DNA损伤、线粒体氧化损伤、促炎细胞因子水平升高以及ECM的降解。在本综述中,将重点探讨皮肤衰老的特征、ROS的生成以及ROS导致皮肤老化的详细机制。
As the body’s largest organ, the skin provides a visual reflection of the overall aging status of the organism. Skin aging can be categorized into intrinsic aging and extrinsic aging, with the primary cellular manifestation occurring in the aging of dermal fibroblasts. In this process, ROS play a crucial role. The major mechanisms through which ROS induces cellular aging include DNA damage, mitochondrial oxidative stress, elevated levels of pro-inflammatory cytokines, and degradation of the ECM. This review focuses on elucidating the characteristics of skin aging, the generation of ROS, and the detailed mechanisms by which ROS contributes to skin aging.
[1] | 徐一凤. 成纤维细胞老化分子机制与皮肤衰老的关系及研究进展[J]. 中国美容医学, 2023, 32(7): 199-202. |
[2] | 雷锐, 吴金峰. 皮肤衰老的特征与机制[J]. 实用老年医学, 2023, 37(10): 978-983. |
[3] | El-Domyati, M., Attia, S., Saleh, F., et al. (2002) Intrinsic Aging vs. Photoaging: A Comparative Histopathological, Immunohistochemical, and Ultrastructural Study of Skin. Experimental Dermatology, 11, 398-405. https://doi.org/10.1034/j.1600-0625.2002.110502.x |
[4] | Emri, G., Horkay, I. and Remenyik, E. (2006) The Role of Free Radicals in the UV-Induced Skin Damage. Photo-Aging. Orvosi Hetilap, 147, 731-735. |
[5] | Zhang, J., Yu, H., Man, M.Q., et al. (2024) Aging in the Dermis: Fibroblast Senescence and Its Significance. Aging Cell, 23, e14054. https://doi.org/10.1111/acel.14054 |
[6] | Shin, J.W., Kwon, S.H., Choi, J.Y., et al. (2019) Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20, Article 2126. https://doi.org/10.3390/ijms20092126 |
[7] | Tagami, H. (2008) Functional Characteristics of the Stratum Corneum in Photoaged Skin in Comparison with Those Found in Intrinsic Aging. Archives of Dermatological Research, 300, 1-6. https://doi.org/10.1007/s00403-007-0799-9 |
[8] | Ritz-Timme, S., Laumeier, I. and Collins, M.J. (2003) Aspartic Acid Racemization: Evidence for Marked Longevity of Elastin in Human Skin. British Journal of Dermatology, 149, 951-959. https://doi.org/10.1111/j.1365-2133.2003.05618.x |
[9] | Quan, T. and Fisher, G.J. (2015) Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology, 61, 427-434. https://doi.org/10.1159/000371708 |
[10] | Mora Huertas, A.C., Schmelzer, C.E., Hoehenwarter, W., et al. (2016) Molecular-Level Insights into Aging Processes of Skin Elastin. Biochimie, 128-129, 163-173. https://doi.org/10.1016/j.biochi.2016.08.010 |
[11] | Tr?bacz, H. and Barzycka, A. (2023) Mechanical Properties and Functions of Elastin: An Overview. Biomolecules, 13, Article 574. https://doi.org/10.3390/biom13030574 |
[12] | 杜克斯, 李泽巧, 张宝江, 等. 面部皮肤衰老的外观变化及形成因素[J]. 日用化学工业, 2022, 52(2): 199-206. |
[13] | Varani, J., Dame, M.K., Rittie, L., et al. (2006) Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. The American Journal of Pathology, 168, 1861-1868. https://doi.org/10.2353/ajpath.2006.051302 |
[14] | Ren, R., Ocampo, A., Liu, G.H., et al. (2017) Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism, 26, 460-474. https://doi.org/10.1016/j.cmet.2017.07.019 |
[15] | Quan, T., Little, E., Quan, H., et al. (2013) Elevated Matrix Metalloproteinases and Collagen Fragmentation in Photodamaged Human Skin: Impact of Altered Extracellular Matrix Microenvironment on Dermal Fibroblast Function. Journal of Investigative Dermatology, 133, 1362-1366. https://doi.org/10.1038/jid.2012.509 |
[16] | Fisher, G.J., Shao, Y., He, T., et al. (2016) Reduction of Fibroblast Size/Mechanical Force Down-Regulates TGF-β Type II Receptor: Implications for Human Skin Aging. Aging Cell, 15, 67-76. https://doi.org/10.1111/acel.12410 |
[17] | Chen, S.X., Zhang, L.J. and Gallo, R.L. (2019) Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. Journal of Investigative Dermatology, 139, 1002-1009. https://doi.org/10.1016/j.jid.2018.12.031 |
[18] | Zhang, L.J., Chen, S.X., Guerrero-Juarez, C.F., et al. (2019) Age-Related Loss of Innate Immune Antimicrobial Function of Dermal Fat Is Mediated by Transforming Growth Factor Beta. Immunity, 50, 121-136. E5. https://doi.org/10.1016/j.immuni.2018.11.003 |
[19] | Dr?se, S. and Brandt, U. (2012) Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain. In: Kadenbach, B., Ed., Mitochondrial Oxidative Phosphorylation, Springer, New York, 145-169. https://doi.org/10.1007/978-1-4614-3573-0_6 |
[20] | Turrens, J.F. (2003) Mitochondrial Formation of Reactive Oxygen Species. The Journal of Physiology, 552, 335-344. https://doi.org/10.1113/jphysiol.2003.049478 |
[21] | Han, D., Antunes, F., Canali, R., et al. (2003) Voltage-Dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. Journal of Biological Chemistry, 278, 5557-5563. https://doi.org/10.1074/jbc.M210269200 |
[22] | Sandalio, L.M. and Romero-Puertas, M.C. (2015) Peroxisomes Sense and Respond to Environmental Cues by Regulating ROS and RNS Signalling Networks. Annals of Botany, 116, 475-485. https://doi.org/10.1093/aob/mcv074 |
[23] | Bae, Y.S., Oh, H., Rhee, S.G., et al. (2011) Regulation of Reactive Oxygen Species Generation in Cell Signaling. Molecular Cell, 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3 |
[24] | Knak, A., Regensburger, J., Maisch, T., et al. (2014) Exposure of Vitamins to UVB and UVA Radiation Generates Singlet Oxygen. Photochemical & Photobiological Sciences, 13, 820-829. https://doi.org/10.1039/c3pp50413a |
[25] | Caldecott, K.W. (2008) Single-Strand Break Repair and Genetic Disease. Nature Reviews Genetics, 9, 619-631. https://doi.org/10.1038/nrg2380 |
[26] | Tan, J., Duan, M., Yadav, T., et al. (2020) An R-Loop-Initiated CSB-RAD52-POLD3 Pathway Suppresses ROS-In-duced Telomeric DNA Breaks. Nucleic Acids Research, 48, 1285-300. https://doi.org/10.1093/nar/gkz1114 |
[27] | Valavanidis, A., Vlachogianni, T. and Fiotakis, C. (2009) 8-Hydroxy-2’-Deoxyguanosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. Journal of Environmental Science and Health-Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 27, 120-139. https://doi.org/10.1080/10590500902885684 |
[28] | Beauséjour, C.M., Krtolica, A., Galimi, F., et al. (2003) Reversal of Human Cellular Senescence: Roles of the p53 and p16 Pathways. The EMBO Journal, 22, 4212-4222. https://doi.org/10.1093/emboj/cdg417 |
[29] | Cedikova, M., Pitule, P., Kripnerova, M., et al. (2016) Multiple Roles of Mitochondria in Aging Processes. Physiological Research, 65, S519-S531. https://doi.org/10.33549/physiolres.933538 |
[30] | Ademowo, O.S., Dias, H.K.I., Burton, D.G.A., et al. (2017) Lipid (per) Oxidation in Mitochondria: An Emerging Target in the Ageing Process? Biogerontology, 18, 859-879. https://doi.org/10.1007/s10522-017-9710-z |
[31] | Chiang, H.M., Chen, H.C., Chiu, H.H., et al. (2013) Neonauclea reticulata (Havil.) Merr Stimulates Skin Regeneration after UVB Exposure via ROS Scavenging and Modulation of the MAPK/MMPs/Collagen Pathway. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 324864. https://doi.org/10.1155/2013/324864 |
[32] | Han, H.S., Shin, J.S., Myung, D.B., et al. (2019) Hydrangea serrata (Thunb.) Ser. Extract Attenuate UVB-Induced Photoaging through MAPK/AP-1 Inactivation in Human Skin Fibroblasts and Hairless Mice. Nutrients, 11, Article 533. https://doi.org/10.3390/nu11030533 |
[33] | Salminen, A., Kaarniranta, K. and Kauppinen, A. (2012) Inflammaging: Disturbed Interplay between Autophagy and Inflammasomes. Aging (Albany NY), 4, 166-175. https://doi.org/10.18632/aging.100444 |
[34] | Wiggins, K.A. and Clarke, M.C. (2019) Senescence Utilises Inflammatory Caspases to Drive SASP. Aging (Albany NY), 11, 3891-3892. https://doi.org/10.18632/aging.102031 |
[35] | Tilstra, J.S., Robinson, A.R., Wang, J., et al. (2012) NF-κB Inhibition Delays DNA Damage-Induced Senescence and Aging in Mice. Journal of Clinical Investigation, 122, 2601-2612. https://doi.org/10.1172/JCI45785 |
[36] | Abais, J.M., Xia, M., Zhang, Y., et al. (2015) Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxidants & Redox Signaling, 22, 1111-1129. https://doi.org/10.1089/ars.2014.5994 |