|
间充质干细胞在早产儿脑室周围白质软化的研究进展
|
Abstract:
脑室周围白质软化(periventricular leukomalacia, PVL)是早产儿特有且最为严重的一种脑损伤形式之一。目前对早产儿脑损伤的治疗仍然主要是支持性的,在保护未成熟的大脑或修复损伤以改善长期预后方面疗效甚微。间充质干细胞(mesenchymal stem cells, MSCS)是干细胞家族的重要成员,由于其多向分化潜能、免疫调节和分泌多种营养因子等特点,具有减少脑损伤的潜力,主要是通过抗炎和免疫调节机制,也通过它们释放神经营养或生长因子来促进内源性神经发生。本文就PVL的发病机制、病理特征以及间充质干细胞治疗效果背后的潜在机制进行综述。
Periventricular leukomalacia (PVL) is one of the most serious forms of brain injury unique to preterm infants. Current treatments for brain injury in preterm infants remain largely supportive, with little efficacy in protecting the immature brain or repairing the damage to improve long-term outcomes. Mesenchymal stem cells (MSCS) are important members of the stem cell family. Due to their multi-directional differentiation potential, immune regulation and secretion of a variety of nutritional factors, they have the potential to reduce brain injury, mainly through anti-inflammatory and immunomodulatory mechanisms. They also promote endogenous neurogenesis by releasing neurotrophic or growth factors. This article reviews the pathogenesis, pathological features and potential mechanisms behind the therapeutic effect of mesenchymal stem cells on PVL.
[1] | Gotardo, J.W., Volkmer, N., Stangler, G.P., et al. (2019) Impact of Peri-Intraventricular Haemorrhage and Periventricular Leukomalacia in the Neurodevelopment of Preterms: A Systematic Review and Meta-Analysis. PLOS ONE, 14, e223427. https://doi.org/10.1371/journal.pone.0223427 |
[2] | Agut, T., Alarcon, A., Cabanas, F., et al. (2020) Preterm White Matter Injury: Ultrasound Diagnosis and Classification. Pediatric Research, 87, 37-49. https://doi.org/10.1038/s41390-020-0781-1 |
[3] | Kurimoto, T., Ibara, S., Kamitomo, M., et al. (2020) Assessment of Risk Factors for Cystic Periventricular Leukomalacia. Journal of Obstetrics and Gynaecology Research, 46, 2383-2389. https://doi.org/10.1111/jog.14473 |
[4] | Schneider, J. and Miller, S.P. (2019) Chapter 7—Preterm Brain Injury: White Matter Injury. Handbook of Clinical Neurology, 162, 155-172. https://doi.org/10.1016/B978-0-444-64029-1.00007-2 |
[5] | Dan, B. (2018) What Causes the Encephalopathy of Prematurity? Developmental Medicine and Child Neurology, 60, 114. https://doi.org/10.1111/dmcn.13662 |
[6] | Huang, J., Zhang, L., Kang, B., et al. (2017) Association between Perinatal Hypoxic-Ischemia and Periventricular Leukomalacia in Preterm Infants: A Systematic Review and Meta-Analysis. PLOS ONE, 12, e184993. https://doi.org/10.1371/journal.pone.0184993 |
[7] | Romero-Guzman, G.J. and Lopez-Munoz, F. (2017) Prevalence and Risk Factors for Periventricular Leukomalacia in Preterm Infants. A Systematic Review. Revista de Neurologia, 65, 57-62. |
[8] | 延新新, 梁玉美. 早产儿脑白质损伤的研究新进展[J]. 医学理论与实践. 2019, 32(10): 1486-1488. |
[9] | 司冉冉, 宋红, 宋焕清, 等. 早产儿脑白质损伤早期相关高危因素[J]. 中国实用神经疾病杂志. 2022, 25(1): 49-52. |
[10] | Verhagen, E.A., Hummel, L.A., Bos, A.F., et al. (2014) Near-Infrared Spectroscopy to Detect Absence of Cerebrovascular Autoregulation in Preterm Infants. Clinical Neurophysiology, 125, 47-52. https://doi.org/10.1016/j.clinph.2013.07.001 |
[11] | Kurimoto, T., Ibara, S., Kamitomo, M., et al. (2020) Assessment of Risk Factors for Cystic Periventricular Leukomalacia. Journal of Obstetrics and Gynaecology Research, 46, 2383-2389. https://doi.org/10.1111/jog.14473 |
[12] | Baranano, K. and Burd, I. (2022) CNS Malformations in the Newborn. Maternal Health, Neonatology and Perinatology, 8, 1. https://doi.org/10.1186/s40748-021-00136-4 |
[13] | Motavaf, M. and Piao, X. (2021) Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Frontiers in Cellular Neuroscience, 15, Article 764486. https://doi.org/10.3389/fncel.2021.764486 |
[14] | Guillot, M. and Miller, S.P. (2021) The Dimensions of White Matter Injury in Preterm Neonates. Seminars in Perinatology, 45, Article 151469. https://doi.org/10.1016/j.semperi.2021.151469 |
[15] | Juul, S.E., Comstock, B.A., Wadhawan, R., et al. (2020) A Randomized Trial of Erythropoietin for Neuroprotection in Preterm Infants. The New England Journal of Medicine, 382, 233-243. https://doi.org/10.1056/NEJMoa1907423 |
[16] | Garofoli, F., Longo, S., Pisoni, C., et al. (2021) Oral Melatonin as a New Tool for Neuroprotection in Preterm Newborns: Study Protocol for a Randomized Controlled Trial. Trials, 22, Article No. 82. https://doi.org/10.1186/s13063-021-05034-w |
[17] | Berglund, S., Magalhaes, I., Gaballa, A., et al. (2017) Advances in Umbilical Cord Blood Cell Therapy: The Present and the Future. Expert Opinion on Biological Therapy, 17, 691-699. https://doi.org/10.1080/14712598.2017.1316713 |
[18] | Sisa, C., Kholia, S., Naylor, J., et al. (2019) Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Frontiers in Physiology, 10, Article 282. https://doi.org/10.3389/fphys.2019.00282 |
[19] | Levard, D., Buendia, I., Lanquetin, A., et al. (2021) Filling the Gaps on Stroke Research: Focus on Inflammation and Immunity. Brain, Behavior, and Immunity, 91, 649-667. https://doi.org/10.1016/j.bbi.2020.09.025 |
[20] | Xiang, E., Han, B., Zhang, Q., et al. (2020) Human Umbilical Cord-Derived Mesenchymal Stem Cells Prevent the Progression of Early Diabetic Nephropathy through Inhibiting Inflammation and Fibrosis. Stem Cell Research & Therapy, 11, Article No. 336. https://doi.org/10.1186/s13287-020-01852-y |
[21] | He, J., Zhang, N., Zhu, Y., et al. (2021) MSC Spheroids-Loaded Collagen Hydrogels Simultaneously Promote Neuronal Differentiation and Suppress Inflammatory Reaction through PI3K-Akt Signaling Pathway. Biomaterials, 265, Article 120448. https://doi.org/10.1016/j.biomaterials.2020.120448 |
[22] | Wagenaar, N., de Theije, C., de Vries, L.S., et al. (2018) Promoting Neuroregeneration after Perinatal Arterial Ischemic Stroke: Neurotrophic Factors and Mesenchymal Stem Cells. Pediatric Research, 83, 372-384. https://doi.org/10.1038/pr.2017.243 |
[23] | Borkowska, P., Zielinska, A., Paul-Samojedny, M., et al. (2021) Synergistic Effect of the Long-Term Overexpression of Bcl-2 and BDNF Lentiviral in Cell Protecting against Death and Generating TH Positive and CHAT Positive Cells from MSC. International Journal of Molecular Sciences, 22, Article 7086. https://doi.org/10.3390/ijms22137086 |
[24] | Liu, D., Ye, Y., Xu, L., et al. (2018) Icariin and Mesenchymal Stem Cells Synergistically Promote Angiogenesis and Neurogenesis after Cerebral Ischemia via PI3K and ERK1/2 Pathways. Biomedicine & pharmacotherapy, 108, 663-669. https://doi.org/10.1016/j.biopha.2018.09.071 |
[25] | Hagmeijer, M.H., Korpershoek, J.V., Crispim, J.F., et al. (2021) The Regenerative Effect of Different Growth Factors and Platelet Lysate on Meniscus Cells and Mesenchymal Stromal Cells and Proof of Concept with a Functionalized Meniscus Implant. Journal of Tissue Engineering and Regenerative Medicine, 15, 648-659. https://doi.org/10.1002/term.3218 |
[26] | Li, W.Y., Choi, Y.J., Lee, P.H., et al. (2008) Mesenchymal Stem Cells for Ischemic Stroke: Changes in Effects after ex Vivo Culturing. Cell Transplant, 17, 1045-1059. https://doi.org/10.3727/096368908786991551 |
[27] | Xiang, J., Hu, J., Shen, T., et al. (2017) Bone Marrow Mesenchymal Stem Cells-Conditioned Medium Enhances Vascular Remodeling after Stroke in Type 2 Diabetic Rats. Neuroscience Letters, 644, 62-66. https://doi.org/10.1016/j.neulet.2017.02.040 |