|
Modern Management 2024
企业财务欺诈异常检测及其最新进展
|
Abstract:
财务欺诈对经济市场的稳定性和信任体系造成了重大威胁,准确识别和检测财务欺诈异常变得至关重要。本文综述了企业财务欺诈异常检测的最新进展。首先介绍了传统的财务欺诈检测方法,重点讨论了基于机器学习和数据挖掘技术的财务欺诈检测方法。这些方法利用丰富的财务数据和模式识别算法,可以自动发现潜在的欺诈行为。接着介绍了出现的新方法:将财务报表、媒体新闻、企业公告等文本数据纳入检测范围。新方法通过提取更多的特征信息、融合多种数据源的方式,提高了财务欺诈检测的准确性和效率。
Financial fraud poses a major threat to the stability and trust system of the economic market, so it is very important to accurately identify and detect financial fraud anomalies. This paper reviews the latest progress in anomaly detection of financial fraud in enterprises. Firstly, the traditional financial fraud detection methods are introduced, and the financial fraud detection methods based on machine learning and data mining technology are mainly discussed. These methods use rich financial data and pattern recognition algorithms to automatically spot potential fraud. Then, a new method is introduced: text data such as financial statements, media news and corporate announcements are included in the scope of detection. The new method improves the accuracy and efficiency of financial fraud detection by extracting more characteristic information and integrating multiple data sources.
[1] | 黄学敏. 上市公司财务欺诈及其监管研究[D]: [博士学位论文]. 厦门: 厦门大学, 2006. |
[2] | 杨芳, 刘端, 汪子文. 现金流量指标在上市公司财务欺诈识别中应用的实证研究[J]. 金融经济(理论版), 2006(8): 122-124. |
[3] | 袁先智, 周云鹏, 严诚幸, 等. 公司财务欺诈预警与风险特征筛选的新方法: 基于人工智能算法[C]//中国管理现代化研究会, 复旦管理学奖励基金会. 第十五届(2020)中国管理学年会论文集: 2020年卷. 北京: 中国管理现代化研究会, 2020: 1-16. |
[4] | 陈孝新. 上市公司财务欺诈的识别模型[J]. 统计与决策, 2005(13): 44-45. |
[5] | 余玉苗, 吕凡. 财务舞弊风险的识别——基于财务指标增量信息的研究视角[J]. 经济评论, 2010(4): 124-130. |
[6] | 熊芮卿. 基于时序性信息的财务报表欺诈识别[D]: [硕士学位论文]. 成都: 西南交通大学, 2013. |
[7] | Al-Hashedi, K.G. and Magalingam, P. (2021) Financial Fraud Detection Applying Data Mining Techniques: A Comprehensive Review from 2009 to 2019. Computer Science Review, 40, Article ID: 100402. https://doi.org/10.1016/j.cosrev.2021.100402 |
[8] | Persons, O.S. (1995) Using Financial Statement Data to Identify Factors Associated with Fraudulent Financial Reporting. Journal of Applied Business Research (JABR), 11, 38-46. https://doi.org/10.19030/jabr.v11i3.5858 |
[9] | Deng, Q. (2009) Application of Support Vector Machine in the Detection of Fraudulent Financial Statements. 2009 4th International Conference on Computer Science & Education, Nanning, 25-28 July 2009, 1056-1059. https://doi.org/10.1109/ICCSE.2009.5228542 |
[10] | Li, X. and Ying, S. (2010) Lib-SVMs Detection Model of Regulating-Profits Financial Statement Fraud Using Data of Chinese Listed Companies. 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, 7-9 November 2010, 1-4. https://doi.org/10.1109/ICEEE.2010.5660371 |
[11] | Moepya, S.O., Nelwamondo, F.V. and Van Der Walt, C. (2014) A Support Vector Machine Approach to Detect Financial Statement Fraud in South Africa: A First Look. Intelligent Information and Database Systems: 6th Asian Conference, ACIIDS 2014, Bangkok, 7-9 April 2014, 42-51. https://doi.org/10.1007/978-3-319-05458-2_5 |
[12] | Yao, J., Pan, Y., Yang, S., et al. (2019) Detecting Fraudulent Financial Statements for the Sustainable Development of the Socio-Economy in China: A Multi-Analytic Approach. Sustainability, 11, Article 1579. https://doi.org/10.3390/su11061579 |
[13] | El-Bannany, M., Dehghan, A.H. and Khedr, A.M. (2021) Prediction of Financial Statement Fraud Using Machine Learning Techniques in UAE. 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, 22-25 March 2021, 649-654. https://doi.org/10.1109/SSD52085.2021.9429297 |
[14] | Chi, D.J., Chu, C.C. and Chen, D. (2019) Applying Support Vector Machine, C5.0, and CHAID to the Detection of Financial Statements Frauds. Intelligent Computing Methodologies: 15th International Conference, ICIC 2019, Nanchang, 3-6 August 2019, 327-336. https://doi.org/10.1007/978-3-030-26766-7_30 |
[15] | Fanning, K.M. and Cogger, K.O. (1998) Neural Network Detection of Management Fraud Using Published Financial Data. Intelligent Systems in Accounting, Finance & Management, 7, 21-41. https://doi.org/10.1002/(SICI)1099-1174(199803)7:1<21::AID-ISAF138>3.0.CO;2-K |
[16] | Rizki, A.A., Surjandari, I. and Wayasti, R.A. (2017) Data Mining Application to Detect Financial Fraud in Indonesia’s Public Companies. 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, 25-26 October 2017, 206-211. https://doi.org/10.1109/ICSITech.2017.8257111 |
[17] | Lin, C.C., Chiu, A.A., Huang, S.Y., et al. (2015) Detecting the Financial Statement Fraud: The Analysis of the Differences between Data Mining Techniques and Experts’ Judgments. Knowledge-Based Systems, 89, 459-470. https://doi.org/10.1016/j.knosys.2015.08.011 |
[18] | Nawaiseh, A.K., Abbod, M.F. and Itagaki, T. (2020) Financial Statement Audit Using Support Vector Machines, Artificial Neural Networks and K-Nearest Neighbor: An Empirical Study of UK and Ireland. International Journal of Simulation—Systems, Science & Technology, 21, 1-6. https://doi.org/10.5013/IJSSST.a.21.02.07 |
[19] | 范斌, 宁德军, 卢俊哲, 等. 基于加权KNN与代价敏感多分支深度神经网络的审计数据异常检测[J]. 计算机应用与软件, 2024, 41(2): 100-108. |
[20] | Perols, J. (2011) Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms. Auditing: A Journal of Practice & Theory, 30, 19-50. https://doi.org/10.2308/ajpt-50009 |
[21] | Song, X.P., Hu, Z.H., Du, J.G., et al. (2014) Application of Machine Learning Methods to Risk Assessment of Financial Statement Fraud: Evidence from China. Journal of Forecasting, 33, 611-626. https://doi.org/10.1002/for.2294 |
[22] | Hajek, P. and Henriques, R. (2017) Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud—A Comparative Study of Machine Learning Methods. Knowledge-Based Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001 |
[23] | Ye, H., Xiang, L. and Gan, Y. (2019) Detecting Financial Statement Fraud Using Random Forest with SMOTE. IOP Conference Series: Materials Science and Engineering, 612, Article ID: 052051. https://doi.org/10.1088/1757-899X/612/5/052051 |
[24] | Liu, Z., Ye, R. and Ye, R. (2021) Detecting Financial Statement Fraud with Interpretable Machine Learning. https://doi.org/10.21203/rs.3.rs-640038/v1 |
[25] | Ali, A.A., Khedr, A.M., El-Bannany, M., et al. (2023) A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique. Applied Sciences, 13, Article 2272. https://doi.org/10.3390/app13042272 |
[26] | Khedr, A.M., El Bannany, M. and Kanakkayil, S. (2021) An Ensemble Model for Financial Statement Fraud Detection. Journal of Universal Computer Science, 2, e69590. https://doi.org/10.3897/arphapreprints.e69590 |
[27] | Achakzai, M.A.K. and Peng, J. (2023) Detecting Financial Statement Fraud Using Dynamic Ensemble Machine Learning. International Review of Financial Analysis, 89, Article ID: 102827. https://doi.org/10.1016/j.irfa.2023.102827 |
[28] | Dong, W., Liao, S. and Liang, L. (2016) Financial Statement Fraud Detection Using Text Mining: A Systemic Functional Linguistics Theory Perspective. Proceeding of the 20th Pacific Asia Conference on Information Systems, Chiayi, June 27-July 1 2016, 188. |
[29] | Nie?ner, T., Gross, D.H. and Schumann, M. (2022) Evidential Strategies in Financial Statement Analysis: A Corpus Linguistic Text Mining Approach to Bankruptcy Prediction. Journal of Risk and Financial Management, 15, Article 459. https://doi.org/10.3390/jrfm15100459 |
[30] | 程双双, 谷晓燕, 王兴芬. 基于非平衡MDA文本数据的财务欺诈识别[J]. 管理现代化, 2024(1): 121-127. |
[31] | 刘华玲, 陶龙, 曹亚珂, 等. 基于文本数据挖掘的上市公司财务欺诈识别研究[C]//中国管理现代化研究会, 复旦管理学奖励基金会. 第十八届(2023)中国管理学年会暨“一带一路”十周年研讨会论文集: 2023年卷. 上海: 上海对外经贸大学统计与信息学院, 2023: 1-8. |
[32] | Craja, P., Kim, A. and Lessmann, S. (2020) Deep Learning for Detecting Financial Statement Fraud. Decision Support Systems, 139, Article ID: 113421. https://doi.org/10.1016/j.dss.2020.113421 |
[33] | 刘会醒, 程建华. 基于集成学习和文本分析的财务欺诈识别研究[J]. 福建商学院学报, 2023(4): 42-52. |
[34] | 陈朝焰, 韩冬梅, 吴馨一. 融合新闻文本和时序信息的上市公司财务欺诈预警[J]. 财会月刊, 2023, 44(12): 30-39. |
[35] | 李爱华, 王迪文, 续维佳, 等. 基于多数据源融合的创业板上市公司财务造假异常检测[J]. 数据分析与知识发现, 2023, 7(5): 33-47. |
[36] | 肖庆兰. 财务指标与文本相结合的上市公司财务欺诈识别[D]: [硕士学位论文]. 南昌: 南昌江西财经大学, 2022. |
[37] | Islam, S., Haque, M.M. and Karim, A.N.M.R. (2024) A Rule-Based Machine Learning Model for Financial Fraud Detection. International Journal of Electrical & Computer Engineering, 14, 759-771. https://doi.org/10.11591/ijece.v14i1.pp759-771 |
[38] | Innan, N., Sawaika, A., Dhor, A., et al. (2024) Financial Fraud Detection Using Quantum Graph Neural Networks. Quantum Machine Intelligence, 6, Article No. 7. https://doi.org/10.1007/s42484-024-00143-6 |
[39] | Wu, B., Chao, K.M. and Li, Y. (2024) Heterogeneous Graph Neural Networks for Fraud Detection and Explanation in Supply Chain Finance. Information Systems, 121, Article ID: 102335. https://doi.org/10.1016/j.is.2023.102335 |
[40] | Munteanu, V., Zuca, M.R., Horaicu, A., et al. (2024) Auditing the Risk of Financial Fraud Using the Red Flags Technique. Applied Sciences, 14, Article 757. https://doi.org/10.3390/app14020757 |
[41] | Kanaparthi, V. (2024) Transformational Application of Artificial Intelligence and Machine Learning in Financial Technologies and Financial Services: A Bibliometric Review. International Journal of Engineering and Advanced Technology, 13, 71-77. https://doi.org/10.35940/ijeat.D4393.13030224 |