|
基于SOLO分类理论的中考数学分析——以2023年盐城市中考数学试题为例
|
Abstract:
利用SOLO分类理论对盐城市中考试题各个思维层次进行分析。结果显示:试卷整体考查内容全面,主要聚焦于代数和几何两大主题;试题整体思维层次要求适中,能力划分清晰,存在明显的SOLO梯度,其分布趋势由高到低依次为单点结构、多点结构、关联结构、抽象拓展结构。对SOLO层次结构的分析表明各个知识领域的考查存在不均衡、不全面的现象。试题考查的特点对教学的启发指导意义在于:深挖教材,注重基础;因材施教,全面发展。
Using SOLO classification theory to analyze the thinking levels of the middle school entrance examination questions in Yancheng City, the results show that the overall examination content of the test paper is comprehensive, mainly focusing on two major themes: algebra and geometry; The overall thinking level of the test questions should be moderate, with clear ability division and a clear SOLO gradient, with a distribution trend of single point structure > multi-point structure > related structure > abstract extension structure. The analysis of the SOLO hierarchy structure shows that there is an uneven and incomplete phenomenon in the examination of various knowledge fields. The characteristics of the test questions are inspiring for teaching: dig deep into the textbook, pay attention to the foundation; Teach students according to their aptitude and achieve comprehensive development.
[1] | 曾建国. 基于SOLO分类理论的高考数学试题评价研究——知识点考查的视角[J]. 赣南师范大学学报, 2016, 37(6): 130-134. |
[2] | 中华人民共和国教育部. 义务教育数学课程标准(2022年版) [M]. 北京: 北京师范大学出版社, 2022. |
[3] | 鲁依玲, 夏玉梅, 宁连华. 基于SOLO分类理论的高考数学试题分析——以2022年全国数学新高考I卷为例[J]. 数学教育学报, 2023, 32(3): 18-23. |
[4] | 鞠丽楠. 基于SOLO分类理论的北京市中考数学试题研究[D]: [硕士学位论文]. 北京: 中央民族大学, 2021. |
[5] | 徐寿蓉. 基于SOLO分类理论的中考数学盐城试题与南通试题的比较研究[D]: [硕士学位论文]. 西宁: 青海师范大学, 2022. |