全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用机器学习鉴定并验证骨关节炎中潜在的双硫死亡相关基因
Identification and Validation of Disulfidptosis-Related Genes in Osteoarthritis by Machine Learning

DOI: 10.12677/acm.2024.1441129, PP. 1084-1098

Keywords: 双硫死亡,骨关节炎,机器学习,免疫
Disulfidptosis
, Osteoarthritis, Machine Learning, Immune Infiltration

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨关节炎(Osteoarthritis, OA)是一种普遍影响中老年人群的慢性炎性疾病,其典型表现为软骨退行性变、关节炎症以及功能受损。面对目前缺乏有效治疗手段的现状,迫切需要更为全面的理论指导。双硫死亡,作为一种新近发现的细胞死亡方式,在多种疾病中均有涉及,其与骨关节炎的关联尚未明确。本研究基于已报道的双硫死亡相关基因,运用GEO数据库中的三组数据集(GSE55235, GSE55457, GSE82107),采用多元机器学习技术将骨关节炎分为两种亚型。研究识别出九个潜在的双硫死亡相关关键差异表达基因(hubDEGs),其中APOD、EDNRB、FOXC2、JUN、LRCH1和MAFF在骨关节炎患者中呈下调趋势,而NUDT1、PNMAL1和ZNF668则呈上调趋势。深入探究发现,这些hubDEGs与骨关节炎中免疫细胞浸润的变化密切相关,主要表现为嗜酸细胞和Th2细胞浸润的减少,以及iDC、巨噬细胞、NK细胞、Treg细胞、Tfh细胞和Th1细胞浸润的增加。利用GSE89408作为独立验证数据集,结合qRT-PCR实验验证了这九个基因在双硫死亡与骨关节炎关联中的关键作用。此外,本研究还构建了一个TF-mRNA-miRNA网络,鉴定出可能的干预靶点,包括CTCF、SP1、hsa-miR-29和hsa-miR-424。这项研究首次揭示了骨关节炎与双硫死亡之间的潜在联系,并识别出参与骨关节炎中双硫死亡过程的关键基因和靶点,为骨关节炎的临床诊断和治疗提供了新颖视角。
Osteoarthritis (OA) is a chronic inflammatory disease that afflicts a large population of middle-aged people, manifesting as cartilage degeneration, joint inflammation, and functional impairment. Currently, effective therapeutic interventions are lacking, which calls for more comprehensive theoretical guidance. Disulfidptosis, a newly discovered form of cell death implicated in various diseases, may be related to OA, but this has not been explored before. Based on previously reported disulfidptosis-related genes, this study used three datasets from the GEO database (GSE55235, GSE55457, GSE82107) and applied various machine learning methods to classify OA into two subtypes. Nine potential disulfidptosis-related hub of Differentially Expressed Genes (hubDEGs) were identified, among which APOD, EDNRB, FOXC2, JUN, LRCH1, and MAFF were down-regulated, and NUDT1, PNMAL1, and ZNF668 were up-regulated. Further exploration revealed that hubDEGs were associated with altered immune cell infiltration in OA, marked by decreased infiltration of eosinophils and Th2 cells, and increased infiltration of iDC, macrophages, NK cells, Treg cells, Tfh cells, and Th1 cells. GSE89408, as an independent dataset, and qRT-PCR confirmed the critical role of these nine genes in the association between disulfidptosis and OA. Moreover, a TF-mRNA-miRNA network was constructed, identifying potential intervention targets, such as CTCF, SP1, hsa-miR-29, and hsa-miR-424. This study is the first to reveal a possible link between OA and disulfidptosis, and to uncover key genes and targets involved in disulfidptosis in OA, providing novel insights for the clinical diagnosis and treatment of OA.

References

[1]  Hunter, D.J. and Bierma-Zeinstra, S. (2019) Osteoarthritis. The Lancet, 393, 1745-1759.
https://doi.org/10.1016/S0140-6736(19)30417-9
[2]  Bortoluzzi, A., Furini, F. and Scirè, C.A. (2018) Osteoarthritis and Its Management-Epidemiology, Nutritional Aspects and Environmental Factors. Autoimmunity Reviews, 17, 1097-1104.
https://doi.org/10.1016/j.autrev.2018.06.002
[3]  Long, H., Liu, Q., Yin, H., et al. (2022) Prevalence Trends of Site-Specific Osteoarthritis from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. Arthritis & Rheumatology, 74, 1172-1183.
https://doi.org/10.1002/art.42089
[4]  Gr?ssel, S. and Muschter, D. (2020) Recent Advances in the Treatment of Osteoarthritis. F1000Research, 9, Article 325.
https://doi.org/10.12688/f1000research.22115.1
[5]  An, S., Hu, H., Li, Y., et al. (2020) Pyroptosis Plays a Role in Osteoarthritis. Aging and Disease, 11, 1146-1157.
https://doi.org/10.14336/AD.2019.1127
[6]  Shen, P., Jia, S., Wang, Y., et al. (2022) Mechanical Stress Protects Against Chondrocyte Pyroptosis through Lipoxin A4 via Synovial Macrophage M2 Subtype Polarization in an Osteoarthritis Model. Biomedicine & Pharmacotherapy, 153, Article 113361.
https://doi.org/10.1016/j.biopha.2022.113361
[7]  Yao, X., Sun, K., Yu, S., et al. (2021) Chondrocyte Ferroptosis Contribute to the Progression of Osteoarthritis. Journal of Orthopaedic Translation, 27, 33-43.
https://doi.org/10.1016/j.jot.2020.09.006
[8]  Zhang, S., Xu, J., Si, H., et al. (2022) The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants, 11, Article 1668.
https://doi.org/10.3390/antiox11091668
[9]  Wang, W., Chen, Z. and Hua, Y. (2023) Bioinformatics Prediction and Experimental Validation Identify a Novel Cuproptosis-Related Gene Signature in Human Synovial Inflammation during Osteoarthritis Progression. Biomolecules, 13, Article 127.
https://doi.org/10.3390/biom13010127
[10]  Huang, Y.F., Wang, G., Ding, L., et al. (2023) Lactate-Upregulated NADPH-Dependent NOX4 Expression via HCAR1/PI3K Pathway Contributes to ROS-Induced Osteoarthritis Chondrocyte Damage. Redox Biology, 67, Article 102867.
https://doi.org/10.1016/j.redox.2023.102867
[11]  Sasaki, E., Yamamoto, H., Matsuta, R., et al. (2022) Metabolomics of Osteoarthritis with Synovitis in Middle Aged Women from the Iwaki Health Promotion Project. Osteoarthritis and Cartilage, 30, S96-S97.
https://doi.org/10.1016/j.joca.2022.02.122
[12]  Lambrecht, S., Verbruggen, G., Verdonk, P.C.M., et al. (2008) Differential Proteome Analysis of Normal and Osteoarthritic Chondrocytes Reveals Distortion of Vimentin Network in Osteoarthritis. Osteoarthritis and Cartilage, 16, 163-173.
https://doi.org/10.1016/j.joca.2007.06.005
[13]  Liu, X., Olszewski, K., Zhang, Y., et al. (2020) Cystine Transporter Regulation of Pentose Phosphate Pathway Dependency and Disulfide Stress Exposes a Targetable Metabolic Vulnerability in Cancer. Nature Cell Biology, 22, 476-486.
https://doi.org/10.1038/s41556-020-0496-x
[14]  Liu, X., Nie, L., Zhang, Y., et al. (2023) Actin Cytoskeleton Vulnerability to Disulfide Stress Mediates Disulfidptosis. Nature Cell Biology, 25, 404-414.
https://doi.org/10.1038/s41556-023-01091-2
[15]  Woetzel, D., Huber, R., Kupfer, P., et al. (2014) Identification of Rheumatoid Arthritis and Osteoarthritis Patients by Transcriptome-Based Rule Set Generation. Arthritis Research & Therapy, 16, Article No. R84.
https://doi.org/10.1186/ar4526
[16]  Broeren, M.G.A., De Vries, M., Bennink, M.B., et al. (2016) Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium. PLOS ONE, 11, e0167076.
https://doi.org/10.1371/journal.pone.0167076
[17]  Guo, Y., Walsh, A.M., Fearon, U., et al. (2017) CD40L-Dependent Pathway Is Active at Various Stages of Rheumatoid Arthritis Disease Progression. Journal of Immunology, 198, 4490-4501.
https://doi.org/10.4049/jimmunol.1601988
[18]  Leek, J.T., Johnson, W.E., Parker, H.S., et al. (2023) sva: Surrogate Variable Analysis.
https://bioconductor.org/packages/sva
[19]  Ritchie, M.E., Phipson, B., Wu, D., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47.
https://doi.org/10.1093/nar/gkv007
[20]  Greenacre, M., Groenen, P.J.F., Hastie, T., et al. (2022) Principal Component Analysis. Nature Reviews Methods Primers, 2, Article No. 100.
https://doi.org/10.1038/s43586-022-00184-w
[21]  Lê, S., Josse, J. and Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25, 1-18.
https://doi.org/10.18637/jss.v025.i01
[22]  Wilkerson, M.D. and Hayes, D.N. (2010) ConsensusClusterPlus: A Class Discovery Tool with Confidence Assessments and Item Tracking. Bioinformatics, 26, 1572-1573.
https://doi.org/10.1093/bioinformatics/btq170
[23]  Villanueva, R.A.M. and Chen, Z.J. (2019) Ggplot2: Elegant Graphics for Data Analysis (2nd Ed.). Measurement: Interdisciplinary Research and Perspectives, 17, 160-167.
https://doi.org/10.1080/15366367.2019.1565254
[24]  H?nzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7.
https://doi.org/10.1186/1471-2105-14-7
[25]  Jassal, B., Matthews, L., Viteri, G., et al. (2020) The Reactome Pathway Knowledgebase. Nucleic Acids Research, 48, D498-D503.
https://doi.org/10.1093/nar/gkz1031
[26]  Ashburner, M., Ball, C.A., Blake, J.A., et al. (2000) Gene Ontology: Tool for the Unification of Biology. Nature Genetics, 25, 25-29.
https://doi.org/10.1038/75556
[27]  Wu, T., Hu, E., Xu, S., et al. (2021) ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. The Innovation, 2, Article 100141.
https://doi.org/10.1016/j.xinn.2021.100141
[28]  Kanehisa, M., Furumichi, M., Tanabe, M., et al. (2017) KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Research, 45, D353-D361.
https://doi.org/10.1093/nar/gkw1092
[29]  Karatzoglou, A., Smola, A., Hornik, K., et al. (2004) Kernlab—An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20.
https://doi.org/10.18637/jss.v011.i09
[30]  Liaw, A. and Wiener, M. (2002) Classification and Regression by randomForest. The R Journal, 2, 18-22.
[31]  Zheng, P., Zhou, C., Ding, Y., et al. (2023) Disulfidptosis: A New Target for Metabolic Cancer Therapy. Journal of Experimental & Clinical Cancer Research, 42, Article No. 103.
https://doi.org/10.1186/s13046-023-02675-4
[32]  Liu, H., Deng, Z., Yu, B., et al. (2022) Identification of SLC3A2 as a Potential Therapeutic Target of Osteoarthritis Involved in Ferroptosis by Integrating Bioinformatics, Clinical Factors and Experiments. Cells, 11, Article 3430.
https://doi.org/10.3390/cells11213430
[33]  Elsasser, S., Gali, R.R., Schwickart, M., et al. (2002) Proteasome Subunit Rpn1 Binds Ubiquitin-Like Protein Domains. Nature Cell Biology, 4, 725-730.
https://doi.org/10.1038/ncb845
[34]  You, K., Wang, L., Chou, C.H., et al. (2021) QRICH1 Dictates the Outcome of ER Stress through Transcriptional Control of Proteostasis. Science, 371, eabb6896.
https://doi.org/10.1126/science.abb6896
[35]  Cao, Q., Hong, A., Shen, R., et al. (2023) Disulfidptosis-Related NCK Associated Protein 1 as a Potential Biomarker for Multiple Tumor Types: A Pan-Cancer Analysis Based on Public Databases.
https://www.researchsquare.com
[36]  Shi, M., Wang, J., Xiao, Y., et al. (2018) Glycogen Metabolism and Rheumatoid Arthritis: The Role of Glycogen Synthase 1 in Regulation of Synovial Inflammation via Blocking AMP-Activated Protein Kinase Activation. Frontiers in Immunology, 9, Article 1714.
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01714
https://doi.org/10.3389/fimmu.2018.01714
[37]  Mccorvie, T.J., Loria, P.M., Tu, M., et al. (2022) Molecular Basis for the Regulation of Human Glycogen Synthase by Phosphorylation and Glucose-6-Phosphate. Nature Structural & Molecular Biology, 29, 628-638.
https://doi.org/10.1038/s41594-022-00799-3
[38]  Kohan, A.B., Talukdar, I., Walsh, C.M., et al. (2009) A Role for AMPK in the Inhibition of Glucose-6-Phosphate Dehydrogenase by Polyunsaturated Fatty Acids. Biochemical and Biophysical Research Communications, 388, 117-121.
https://doi.org/10.1016/j.bbrc.2009.07.130
[39]  Yen, W.C., Wu, Y.H., Wu, C.C., et al. (2020) Impaired Inflammasome Activation and Bacterial Clearance in G6PD Deficiency Due to Defective NOX/P38 MAPK/AP-1 Redox Signaling. Redox Biology, 28, Article 101363.
https://doi.org/10.1016/j.redox.2019.101363
[40]  Kawai, T. and Akira, S. (2007) Signaling to NF-κB by Toll-Like Receptors. Trends in Molecular Medicine, 13, 460-469.
https://doi.org/10.1016/j.molmed.2007.09.002
[41]  Zhang, G. and Ghosh, S. (2001) Toll-Like Receptor-Mediated NF-κB Activation: A Phylogenetically Conserved Paradigm in Innate Immunity. The Journal of Clinical Investigation, 107, 13-19.
https://doi.org/10.1172/JCI11837
[42]  Schütze, S., Wiegmann, K., Machleidt, T., et al. (1995) TNF-Induced Activation of NF-κB. Immunobiology, 193, 193-203.
https://doi.org/10.1016/S0171-2985(11)80543-7
[43]  Wang, C.Y., Mayo, M.W. and Baldwin, A.S. (1996) TNF-and Cancer Therapy-Induced Apoptosis: Potentiation by Inhibition of NF-κB. Science, 274, 784-787.
https://doi.org/10.1126/science.274.5288.784
[44]  Hayden, M.S. and Ghosh.S. (2014) Regulation of NF-κB by TNF Family Cytokines. Seminars in Immunology, 26, 253-266.
https://doi.org/10.1016/j.smim.2014.05.004
[45]  Gu, F.M., Li, Q.L., Gao, Q., et al. (2011) IL-17 Induces AKT-Dependent IL-6/JAK2/STAT3 Activation and Tumor Progression in Hepatocellular Carcinoma. Molecular Cancer, 10, Article No. 150.
https://doi.org/10.1186/1476-4598-10-150
[46]  Hu, Z., Luo, D., Wang, D., et al. (2017) IL-17 Activates the IL-6/STAT3 Signal Pathway in the Proliferation of Hepatitis B Virus-Related Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 43, 2379-2390.
https://doi.org/10.1159/000484390
[47]  Sun, M., Sheng, H., Wu, T., et al. (2021) PIKE-A Promotes Glioblastoma Growth by Driving PPP Flux through Increasing G6PD Expression Mediated by Phosphorylation of STAT3. Biochemical Pharmacology, 192, Article 114736.
https://doi.org/10.1016/j.bcp.2021.114736
[48]  Piao, Y.J., Seo, Y.H., Hong, F., et al. (2005) Nox 2 Stimulates Muscle Differentiation via NF-κB/INOS Pathway. Free Radical Biology and Medicine, 38, 989-1001.
https://doi.org/10.1016/j.freeradbiomed.2004.11.011
[49]  Pérez, L., Vallejos, A., Echeverria, C., et al. (2019) OxHDL Controls LOX-1 Expression and Plasma Membrane Localization through a Mechanism Dependent on NOX/ROS/NF-κB Pathway on Endothelial Cells. Laboratory Investigation, 99, 421-437.
https://doi.org/10.1038/s41374-018-0151-3
[50]  Manea, A., Tanase, L.I., Raicu, M., et al. (2010) JAK/STAT Signaling Pathway Regulates Nox1 and Nox4-Based NADPH Oxidase in Human Aortic Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 105-112.
https://doi.org/10.1161/ATVBAHA.109.193896
[51]  Braunersreuther, V., Montecucco, F., Ashri, M., et al. (2013) Role of NADPH Oxidase Isoforms NOX1, NOX2 and NOX4 in Myocardial Ischemia/Reperfusion Injury. Journal of Molecular and Cellular Cardiology, 64, 99-107.
https://doi.org/10.1016/j.yjmcc.2013.09.007
[52]  Tschopp, J. and Schroder, K. (2010) NLRP3 Inflammasome Activation: The Convergence of Multiple Signalling Pathways on ROS Production? Nature Reviews Immunology, 10, 210-215.
https://doi.org/10.1038/nri2725
[53]  Snelling, S., Sinsheimer, J.S., Carr, A., et al. (2007) Genetic Association Analysis of LRCH1 as an Osteoarthritis Susceptibility Locus. Rheumatology, 46, 250-252.
https://doi.org/10.1093/rheumatology/kel265
[54]  Sanchez, D. and Ganfornina, M.D. (2021) The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Frontiers in Physiology, 12, Article 738991.
https://doi.org/10.3389/fphys.2021.738991
[55]  Li, C., Ding, H., Tian, J., et al. (2016) Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP). Cellular Physiology and Biochemistry, 39, 1098-1110.
https://doi.org/10.1159/000447818
[56]  Lin, F., Li, X., Wang, X., et al. (2022) Stanniocalcin 1 Promotes Metastasis, Lipid Metabolism and Cisplatin Chemoresistance via the FOXC2/ITGB6 Signaling Axis in Ovarian Cancer. Journal of Experimental & Clinical Cancer Research, 41, Article No. 129.
https://doi.org/10.1186/s13046-022-02315-3
[57]  Stobdan, T., Zhou, D., Ao-Ieong, E., et al. (2015) Endothelin Receptor B, a Candidate Gene from Human Studies at High Altitude, Improves Cardiac Tolerance to Hypoxia in Genetically Engineered Heterozygote Mice. Proceedings of the National Academy of Sciences, 112, 10425-10430.
https://doi.org/10.1073/pnas.1507486112
[58]  Zhou, J., Deo, B.K., Hosoya, K., et al. (2005) Increased JNK Phosphorylation and Oxidative Stress in Response to Increased Glucose Flux through Increased GLUT1 Expression in Rat Retinal Endothelial Cells. Investigative Ophthalmology & Visual Science, 46, 3403-3410.
https://doi.org/10.1167/iovs.04-1064
[59]  Jiang, X., Deng, X., Wang, J., et al. (2022) BPIFB1 Inhibits Vasculogenic Mimicry via Downregulation of GLUT1-Mediated H3K27 Acetylation in Nasopharyngeal Carcinoma. Oncogene, 41, 233-245.
https://doi.org/10.1038/s41388-021-02079-8
[60]  Spector, T.D., Reneland, R.H., Mah, S., et al. (2006) Association between a Variation InLRCH1 and Knee Osteoarthritis: A Genome-Wide Single-Nucleotide Polymorphism Association Study Using DNA Pooling. Arthritis & Rheumatism, 54, 524-532.
https://doi.org/10.1002/art.21624
[61]  Liu, C., Xu, X., Han, L., et al. (2020) LRCH1 Deficiency Enhances LAT Signalosome Formation and CD8 T Cell Responses against Tumors and Pathogens. Proceedings of the National Academy of Sciences, 117, 19388-19398.
https://doi.org/10.1073/pnas.2000970117
[62]  Koenig, A. and Buskiewicz-Koenig, I.A. (2022) Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxidants & Redox Signaling, 36, 441-461.
https://doi.org/10.1089/ars.2021.0073
[63]  Vitry, G., Paulin, R., Grobs, Y., et al. (2021) Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 203, 614-627.
https://doi.org/10.1164/rccm.202003-0627OC
[64]  Agarwal, S. and De Jesus Perez, V.A. (2021) In Defense of the Nucleus: NUDT1 and Oxidative DNA Damage in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 203, 541-542.
https://doi.org/10.1164/rccm.202009-3706ED

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133