全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

心肌梗塞后再生和修复新途径:心外膜
New Pathways for Regeneration and Repair after Myocardial Infarction: Epicardium

DOI: 10.12677/acm.2024.1441121, PP. 1022-1028

Keywords: 心外膜,修复,再生
Epicardium
, Repair, Regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

心血管疾病在全球发病率居高不下,给人类健康带来严重威胁。心肌梗死(myocardial infarction, MI)后心肌组织无法再生和修复,最终导致心功能障碍。心外膜及心外膜祖细胞不仅对胚胎心脏发育形成起重要调控作用,而且在心肌损伤及修复中扮演重要角色。有研究表明在成人心脏中,损伤会激活心外膜,并观察到胚胎样反应。因此心外膜被认为是一类心肌再生与修复的新来源和新途径,本文结合心外膜起源、心外膜细胞调控信号、心外膜在心肌再生中作用等最新研究情况,评述国内外相关研究进展,讨论心外膜的作用和调控机制,展望未来研究方向。
The incidence of cardiovascular diseases remains high in the world, which poses a serious threat to human health. Failure of myocardial tissue to regenerate and repair after myocardial infarction (MI) ultimately leads to heart dysfunction and heart failure. Epicardium and epicardium progenitor cells not only play an important role in the development and formation of embryonic heart, but also play an important role in myocardial injury and repair. Studies have shown that in adult hearts, damage activates the epicardium and embryonic-like responses are observed. Therefore, the epicardium is considered as a new source and approach for myocardial regeneration and repair. In this review, combined with the latest research on the origin of the epicardium, the regulatory signals of epicardium and epicardium progenitor cells, and the role of the epicardium in myocardial regeneration, we summarized relevant research progress at home and abroad, discussed the role and regulatory mechanism of the epicardium, and looked forward to future research directions.

References

[1]  《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国心血管杂志, 2022, 27(4): 305-318.
[2]  Laflamme, M.A. and Murry, C.E. (2005) Regenerating the Heart. Nature Biotechnology, 23, 845-856.
https://doi.org/10.1038/nbt1117
[3]  Garbern, J.C. and Lee, R.T. (2022) Heart Regeneration: 20 Years of Progress and Renewed Optimism. Developmental Cell, 57, 424-439.
https://doi.org/10.1016/j.devcel.2022.01.012
[4]  Fanton, Y., Robic, B., Rummens, J.L., et al. (2015) Cardiac Atrial Appendage Stem Cells Engraft and Differentiate into Cardiomyocytes in Vivo: A New Tool for Cardiac Repair after MI. International Journal of Cardiology, 201, 10-19.
https://doi.org/10.1016/j.ijcard.2015.07.066
[5]  Kinnaird, T., Stabile, E., Burnett, M.S., et al. (2004) Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote in Vitro and in Vivo Arteriogenesis through Paracrine Mechanisms. Circulation Research, 94, 678-685.
https://doi.org/10.1161/01.RES.0000118601.37875.AC
[6]  Ye, L., Chang, Y.H., Xiong, Q., et al. (2014) Cardiac Repair in a Porcine Model of Acute Myocardial Infarction with Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells. Cell Stem Cell, 15, 750-761.
https://doi.org/10.1016/j.stem.2014.11.009
[7]  Padula, S.L., Velayutham, N. and Yutzey, K.E. (2021) Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. International Journal of Molecular Sciences, 22, 3288.
https://doi.org/10.3390/ijms22063288
[8]  Aguirre, A., Montserrat, N., Zacchigna, S., et al. (2014) In Vivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 15, 589-604.
https://doi.org/10.1016/j.stem.2014.10.003
[9]  Di Stefano, V., Giacca, M., Capogrossi, M.C., et al. (2011) Knockdown of Cyclin-Dependent Kinase Inhibitors Induces Cardiomyocyte Re-Entry in the Cell Cycle. Journal of Biological Chemistry, 286, 8644-8654.
https://doi.org/10.1074/jbc.M110.184549
[10]  D’Uva, G., Aharonov, A., Lauriola, M., et al. (2015) ERBB2 Triggers Mammalian Heart Regeneration by Promoting Cardiomyocyte Dedifferentiation and Proliferation. Nature Cell Biology, 17, 627-638.
https://doi.org/10.1038/ncb3149
[11]  Asl, S.K., Rahimzadegan, M. and Asl, A.K. (2024) Progress in Cardiac Tissue Engineering and Regeneration: Implications of Gelatin-Based Hybrid Scaffolds. International Journal of Biological Macromolecules, 261, Article ID: 129924.
https://doi.org/10.1016/j.ijbiomac.2024.129924
[12]  Smits, A.M. and Riley, P.R. (2014) Epicardium-Derived Heart Repair. Journal of Developmental Biology, 2, 84-100.
https://doi.org/10.3390/jdb2020084
[13]  Winter, E.M., Grauss, R.W., Hogers, B., et al. (2007) Preservation of Left Ventricular Function and Attenuation of Remodeling after Transplantation of Human Epicardium-Derived Cells into the Infarcted Mouse Heart. Circulation, 116, 917-927.
https://doi.org/10.1161/CIRCULATIONAHA.106.668178
[14]  Van Wijk, B., Gunst, Q.D., Moorman, A.F., et al. (2012) Cardiac Regeneration from Activated Epicardium. PLOS ONE, 7, e44692.
https://doi.org/10.1371/journal.pone.0044692
[15]  Limana, F., Zacheo, A., Mocini, D., et al. (2007) Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium. Circulation Research, 101, 1255-1265.
https://doi.org/10.1161/CIRCRESAHA.107.150755
[16]  Masters, M. and Riley, P.R. (2014) The Epicardium Signals the Way towards Heart Regeneration. Stem Cell Research, 13, 683-692.
https://doi.org/10.1016/j.scr.2014.04.007
[17]  Limana, F., Capogrossi, M.C. and Germani, A. (2011) The Epicardium in Cardiac Repair: From the Stem Cell View. Pharmacology & Therapeuticsv, 129, 82-96.
https://doi.org/10.1016/j.pharmthera.2010.09.002
[18]  Cai, C.L., Martin, J.C., Sun, Y., et al. (2008) A Myocardial Lineage Derives from Tbx18 Epicardial Cells. Nature, 454, 104-108.
https://doi.org/10.1038/nature06969
[19]  Zhou, B., Ma, Q., Rajagopal, S., et al. (2008) Epicardial Progenitors Contribute to the Cardiomyocyte Lineage in the Developing Heart. Nature, 454, 109-113.
https://doi.org/10.1038/nature07060
[20]  Acharya, A., Baek, S.T., Huang, G., et al. (2012) The BHLH Transcription Factor Tcf21 Is Required for Lineage-Specific EMT of Cardiac Fibroblast Progenitors. Development, 139, 2139-2149.
https://doi.org/10.1242/dev.079970
[21]  Zhou, B. and Pu, W.T. (2008) More than a Cover: Epicardium as a Novel Source of Cardiac Progenitor Cells. Regenerative Medicine, 3, 633-635.
https://doi.org/10.2217/17460751.3.5.633
[22]  Trembley, M.A., Velasquez, L.S., De Mesy Bentley, K.L., et al. (2015) Myocardin-Related Transcription Factors Control the Motility of Epicardium-Derived Cells and the Maturation of Coronary Vessels. Development, 142, 21-30.
https://doi.org/10.1242/dev.116418
[23]  Austin, A.F., Compton, L.A., Love, J.D., et al. (2008) Primary and Immortalized Mouse Epicardial Cells Undergo Differentiation in Response to TGFbeta. Developmental Dynamics, 237, 366-376.
https://doi.org/10.1002/dvdy.21421
[24]  Mellgren, A.M., Smith, C.L., Olsen, G.S., et al. (2008) Platelet-Derived Growth Factor Receptor Beta Signaling Is Required for Efficient Epicardial Cell Migration and Development of Two Distinct Coronary Vascular Smooth Muscle Cell Populations. Circulation Research, 103, 1393-1401.
https://doi.org/10.1161/CIRCRESAHA.108.176768
[25]  Pennisi, D.J. and Mikawa, T. (2009) FGFR-1 Is Required by Epicardium-Derived Cells for Myocardial Invasion and Correct Coronary Vascular Lineage Differentiation. Developmental Biology, 328, 148-159.
https://doi.org/10.1016/j.ydbio.2009.01.023
[26]  Combs, M.D., Braitsch, C.M., Lange, A.W., et al. (2011) NFATC1 Promotes Epicardium-Derived Cell Invasion into Myocardium. Development, 138, 1747-1757.
https://doi.org/10.1242/dev.060996
[27]  Sanchez-Fernandez, C., Rodriguez-Outeiri?o, L., Matias-Valiente, L., et al. (2022) Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 23, Article No. 3220.
https://doi.org/10.3390/ijms23063220
[28]  Von Gise, A. and Pu, W.T. (2012) Endocardial and Epicardial Epithelial to Mesenchymal Transitions in Heart Development and Disease. Circulation Research, 110, 1628-1645.
https://doi.org/10.1161/CIRCRESAHA.111.259960
[29]  Kikuchi, K., Gupta, V., Wang, J., et al. (2011) Tcf21 Epicardial Cells Adopt Non-Myocardial Fates during Zebrafish Heart Development and Regeneration. Development, 138, 2895-2902.
https://doi.org/10.1242/dev.067041
[30]  Tandon, P., Miteva, Y.V., Kuchenbrod, L.M., et al. (2013) Tcf21 Regulates the Specification and Maturation of Proepicardial Cells. Development, 140, 2409-2421.
https://doi.org/10.1242/dev.093385
[31]  Smith, C.L., Baek, S.T., Sung, C.Y., et al. (2011) Epicardial-Derived Cell Epithelial-to-Mesenchymal Transition and Fate Specification Require PDGF Receptor Signaling. Circulation Research, 108, E15-E26.
https://doi.org/10.1161/CIRCRESAHA.110.235531
[32]  Lavine, K.J., Yu, K., White, A.C., et al. (2005) Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation in Vivo. Developmental Cell, 8, 85-95.
https://doi.org/10.1016/j.devcel.2004.12.002
[33]  Pennisi, D.J. and Mikawa, T. (2005) Normal Patterning of the Coronary Capillary Plexus Is Dependent on the Correct Transmural Gradient of FGF Expression in the Myocardium. Developmental Biology, 279, 378-390.
https://doi.org/10.1016/j.ydbio.2004.12.028
[34]  Cavallero, S., Shen, H., Yi, C., et al. (2015) CXCL12 Signaling Is Essential for Maturation of the Ventricular Coronary Endothelial Plexus and Establishment of Functional Coronary Circulation. Developmental Cell, 33, 469-477.
https://doi.org/10.1016/j.devcel.2015.03.018
[35]  Zhou, B., Honor, L.B., He, H., et al. (2011) Adult Mouse Epicardium Modulates Myocardial Injury by Secreting Paracrine Factors. Journal of Clinical Investigation, 121, 1894-1904.
https://doi.org/10.1172/JCI45529
[36]  Limana, F., Bertolami, C., Mangoni, A., et al. (2010) Myocardial Infarction Induces Embryonic Reprogramming of Epicardial C-Kit( ) Cells: Role of the Pericardial Fluid. Journal of Molecular and Cellular Cardiology, 48, 609-618.
https://doi.org/10.1016/j.yjmcc.2009.11.008
[37]  Duim, S.N., Kurakula, K., Goumans, M.J., et al. (2015) Cardiac Endothelial Cells Express Wilms’ Tumor-1: Wt1 Expression in the Developing, Adult and Infarcted Heart. Journal of Molecular and Cellular Cardiology, 81, 127-135.
https://doi.org/10.1016/j.yjmcc.2015.02.007
[38]  Rui, L., Yu, N., Hong, L., et al. (2014) Extending the Time Window of Mammalian Heart Regeneration by Thymosin Beta 4. Journal of Cellular and Molecular Medicine, 18, 2417-2424.
https://doi.org/10.1111/jcmm.12421
[39]  Duan, J., Gherghe, C., Liu, D., et al. (2012) Wnt1/βCatenin Injury Response Activates the Epicardium and Cardiac Fibroblasts to Promote Cardiac Repair. The EMBO Journal, 31, 429-442.
https://doi.org/10.1038/emboj.2011.418
[40]  Saifi, O., Ghandour, B., Jaalouk, D., et al. (2019) Myocardial Regeneration: Role of Epicardium and Implicated Genes. Molecular Biology Reports, 46, 6661-6674.
https://doi.org/10.1007/s11033-019-05075-0
[41]  Gemberling, M., Karra, R., Dickson, A.L., et al. (2015) Nrg1 Is an Injury-Induced Cardiomyocyte Mitogen for the Endogenous Heart Regeneration Program in Zebrafish. Elife, 4, e05871.
https://doi.org/10.7554/eLife.05871
[42]  Dokic, D. and Dettman, R.W. (2006) VCAM-1 Inhibits TGFbeta Stimulated Epithelial-Mesenchymal Transformation by Modulating Rho Activity and Stabilizing Intercellular Adhesion in Epicardial Mesothelial Cells. Developmental Biology, 299, 489-504.
https://doi.org/10.1016/j.ydbio.2006.08.054
[43]  Bax, N.A., Van Oorschot, A.A., Maas, S., et al. (2011) In Vitro Epithelial-to-Mesenchymal Transformation in Human Adult Epicardial Cells Is Regulated by TGFβ-Signaling and WT1. Basic Research in Cardiology, 106, 829-847.
https://doi.org/10.1007/s00395-011-0181-0
[44]  Li, Y., Urban, A., Midura, D., et al. (2017) Proteomic Characterization of Epicardial-Myocardial Signaling Reveals Novel Regulatory Networks Including a Role for NF-κB in Epicardial EMT. PLOS ONE, 12, e0174563.
https://doi.org/10.1371/journal.pone.0174563
[45]  Clark, C.R., Robinson, J.Y., Sanchez, N.S., et al. (2016) Common Pathways Regulate Type III TGFβ Receptor-Dependent Cell Invasion in Epicardial and Endocardial Cells. Cellular Signalling, 28, 688-698.
https://doi.org/10.1016/j.cellsig.2016.03.004
[46]  DeLaughter, D.M., Clark, C.R., Christodoulou, D.C., et al. (2016) Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 in Vitro. PLOS ONE, 11, E0159710.
https://doi.org/10.1371/journal.pone.0159710
[47]  Karra, R., Knecht, A.K., Kikuchi, K., et al. (2015) Myocardial NF-κB Activation Is Essential for Zebrafish Heart Regeneration. Proceedings of the National Academy of Sciences of the United States of America, 112, 13255-13260.
https://doi.org/10.1073/pnas.1511209112
[48]  Missinato, M.A., Tobita, K., Romano, N., et al. (2015) Extracellular Component Hyaluronic Acid and Its Receptor Hmmr Are Required for Epicardial EMT during Heart Regeneration. Cardiovascular Research, 107, 487-498.
https://doi.org/10.1093/cvr/cvv190
[49]  Lavine, K.J., White, A.C., Park, C., et al. (2006) Fibroblast Growth Factor Signals Regulate a Wave of Hedgehog Activation That Is Essential for Coronary Vascular Development. Genes & Development, 20, 1651-1666.
https://doi.org/10.1101/gad.1411406
[50]  Foglio, E., Puddighinu, G., Fasanaro, P., et al. (2015) Exosomal Clusterin, Identified in the Pericardial Fluid, Improves Myocardial Performance Following MI through Epicardial Activation, Enhanced Arteriogenesis and Reduced Apoptosis. International Journal of Cardiology, 197, 333-347.
https://doi.org/10.1016/j.ijcard.2015.06.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133