|
清眩润目饮治疗干眼症的网络药理学研究
|
Abstract:
目的:应用网络药理学和分子对接方法深入研究清眩润目饮治疗干眼症(Dry Eye Disease, DED)的作用机制。方法:首先,利用TCMSP、UniProt数据库收集清眩润目饮的活性成分及相关靶点,通过Cytoscape 3.9.1软件进行可视化,检索GeneCards与OMIM数据库获取DED的相关靶点。然后,借助venny 2.1平台绘制韦恩图,利用STRING平台构建蛋白相互作用(PPI)网络,并用Cytoscape进行可视化分析。将靶点信息导入Metascape数据库,进行后续的GO功能和KEGG通路富集分析,通过微生信平台进行可视化。最后使用AutoDock进行分子对接。结果:共获得清眩润目饮活性成分204个,对应靶点574个,DED相关靶点2621个,得到294个交集靶点;网络分析的结果显示TNF、IL-6、TP53、JUN、STAT3和AKT1为清眩润目饮治疗DED的核心靶点,槲皮素、山柰酚、木犀草素、维生素和腺苷为关键活性成分。共富集得到827条GO条目,154条KEGG通路。分子对接结果表明2种核心活性成分与TP53和AKT1均有较好结合活性。结论:清眩润目饮可能通过槲皮素、山柰酚、木犀草素、维生素和腺苷等核心活性成分作用于TP53、AKT1等核心靶点治疗DED,为清眩润目饮治疗DED提供理论依据。
Objective: To explore the mechanism of Qingxuan Runmu Decoction in the treatment of Dry Eye Disease (DED) by network pharmacology and molecular docking methods. Methods: Firstly, TCMSP and UniProt databases were used to collect the active ingredients and related targets of Qingxuan Runmu Decoction, and Cytoscape 3.9.1 software was used for visualization. GeneCards and OMIM databases were used to obtain the related targets of DED. Then, venny 2.1 platform was used to draw Venn diagram, STRING platform was used to construct protein-protein interaction (PPI) network, and Cytoscape was used for visual analysis. The target information was imported into the Metascape database for subsequent GO function and KEGG pathway enrichment analysis, which was visualized through the WeChat platform. Finally, AutoDock was used for molecular docking. Results: A total of 204 active ingredients of Qingxuan Runmu Decoction were obtained, with 574 corresponding targets, and 2621 DED related targets were obtained, with 294 intersection targets. The results of network analysis showed that TNF, IL-6, TP53, JUN, STAT3 and AKT1 were the core targets of Qingxuan Runmu Decoction in the treatment of DED, and quercetin, kaempferol, luteolin, vitamin and adenosine were the key active components. A total of 827 GO entries and 154 KEGG pathways were enriched. Molecular docking results showed that the two core active components had good binding activities with TP53 and AKT1. Conclusion: Qingxuan Runmu Decoction may treat DED by acting on the core targets such as TP53 and AKT1 through the core active components such as quercetin, kaempferol, luteolin, vitamin and adenosine, which provides a theoretical basis for the treatment of DED.
[1] | 亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识: 检查和诊断[J]. 中华眼科杂志, 2020, 56(10): 741-747. |
[2] | Papas, E.B. (2021) The Global Prevalence of Dry Eye Disease: A Bayesian View. Ophthalmic & Physiological Optics, 41, 1254-1266. https://doi.org/10.1111/opo.12888 |
[3] | Li, X., Wang, Z., Mu, J., et al. (2023) Prevalence and Associated Risk Factors of Dry Eye Disease in Hotan, Xinjiang: A Cross-Sectional Study. BMC Ophthalmology, 23, Article No. 214. https://doi.org/10.1186/s12886-023-02955-9 |
[4] | 李贵明, 苏杭, 毛祖红. 0.05%环孢素滴眼液联合玻璃酸钠滴眼液治疗白内障术后干眼症的临床效果[J]. 临床合理用药, 2024, 17(1): 139-141, 145. |
[5] | 邓洁, 庞媛. 普拉洛芬联合氟米龙滴眼液治疗中重度干眼症的临床疗效研究[J]. 中国处方药, 2023, 21(12): 119-121. |
[6] | Ebihara, N., Ohashi, Y., Uchio, E., et al. (2009) A Large Prospective Observational Study of Novel Cyclosporine 0.1% Aqueous Ophthalmic Solution in the Treatment of Severe Allergic Conjunctivitis. Journal of Ocular Pharmacology and Therapeutics, 25, 365-372. https://doi.org/10.1089/jop.2008.0103 |
[7] | Lee, J.E., Kim, S., Lee, H.K. et al. (2022) A Randomized Multicenter Evaluation of the Efficacy of 0.15% Hyaluronic Acid versus 0.05% Cyclosporine a in Dry Eye Syndrome. Scientific Reports, 12, Article No. 18737. https://doi.org/10.1038/s41598-022-21330-0 |
[8] | 王佳娣, 安百平, 刘悦, 等. 清眩润目饮颗粒治疗糖尿病干眼患者的临床研究[J]. 中国临床药理学杂志, 2023, 39(22): 3257-3261. |
[9] | 张婷, 张娟, 余琴. 清眩润目饮结合角膜吸氧对自身免疫性干眼症的治疗效果[J]. 吉林中医药, 2023, 43(9): 1059-1062. |
[10] | 王佳娣, 姚靖, 曹丛红, 于坷鑫. 清眩润目饮对蒸发过强型干眼模型鼠角结膜炎症因子表达的影响[J]. 中国中医眼科杂志, 2018, 28(5): 286-291. |
[11] | 王小会. 清眩润目饮加减联合刮痧治疗水液缺乏型干眼(肺阴不足证)的临床研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2022. |
[12] | 宗贝婷. 清眩润目饮加减内外并用对LASIK术后干眼的临床疗效观察[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2020. |
[13] | 于坷鑫. 清眩润目饮对水液缺乏型干眼兔角、结膜IL-1β、IL-6、TNF-α表达影响的实验研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2019. |
[14] | Zhang, R.Z., Yu, S.J., Bai, H. and Ning, K. (2017) TCM-Mesh: The Database and Analytical System for Network Pharmacology Analysis for TCM Preparations. Scientific Reports, 7, Article No. 2821. https://doi.org/10.1038/s41598-017-03039-7 |
[15] | Zhang, S.Y., Yan, Y. and Fu, Y. (2020) Cosmetic Blepharoplasty and Dry Eye Disease: A Review of the Incidence, Clinical Manifestations, Mechanisms and Prevention. International Journal of Ophthalmology, 13, 488-492. https://doi.org/10.18240/ijo.2020.03.18 |
[16] | 袁慧艳, 刘健, 张明明, 李书娇, 亢泽峰. 干眼发病机制及致病因素的研究进展[J]. 中国中医眼科杂志, 2023, 33(7): 675-678, 683. |
[17] | 于坷鑫, 姚靖, 王佳娣, 曹丛红. 清眩润目饮治疗兔蒸发过强型干眼的作用机制[J]. 国际眼科杂志, 2018, 18(7): 1192-1196. |
[18] | 刘畅. 针刺联合中药清眩润目饮治疗水液缺乏性干眼的临床观察[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2016. |
[19] | Krsti?, L., Jarho, P., Ruponen, M., et al. (2022) Improved Ocular Delivery of Quercetin and Resveratrol: A Comparative Study between Binary and Ternary Cyclodextrin Complexes. International Journal of Pharmaceutics, 624, Article ID: 122028. https://doi.org/10.1016/j.ijpharm.2022.122028 |
[20] | Abengózar-Vela, A., Schaumburg, C.S., Stern, M.E., et al. (2019) Topical Quercetin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Ocular Immunology and Inflammation, 27, 1023-1032. https://doi.org/10.1080/09273948.2018.1497664 |
[21] | Najjaran, M., Zarei-Ghanavati, S., Arjmand Askari, E., Eslampoor, A. and Ziaei, M. (2023) Effect of Oral Vitamin D Supplementation on Dry Eye Disease Patients with Vitamin D Deficiency. Clinical & Experimental Optometry, 106, 257-262. https://doi.org/10.1080/08164622.2022.2033601 |
[22] | Alam, J., Yazdanpanah, G., Ratnapriya, R., et al. (2022) IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease with Aging in RXRα Mutant Mouse. Frontiers in Medicine, 9, Article 849990. https://doi.org/10.3389/fmed.2022.849990 |
[23] | Mrugacz, M., Ostrowska, L., Bryl, A., et al. (2017) Pro-Inflammatory Cytokines Associated with Clinical Severity of Dry Eye Disease of Patients with Depression. Advances in Medical Sciences, 62, 338-344. https://doi.org/10.1016/j.advms.2017.03.003 |
[24] | Han, Y., Guo, S., Li, Y., et al. (2023) Berberine Ameliorate Inflammation and Apoptosis via Modulating PI3K/AKT/NFκB and MAPK Pathway on Dry Eye. Phytomedicine, 121, Article ID: 155081. https://doi.org/10.1016/j.phymed.2023.155081 |
[25] | Ma, B., Zhou, Y., Liu, R., et al. (2021) Pigment Epithelium-Derived Factor (PEDF) Plays Anti-Inflammatory Roles in the Pathogenesis of Dry Eye Disease. The Ocular Surface, 20, 70-85. https://doi.org/10.1016/j.jtos.2020.12.007 |
[26] | Zhu, J.Y., Zhang, X., Zheng, X., et al. (2022) Dry Eye Symptoms in Interferon Regulatory Factor 3-Deficient Mice Due to Herpes Simplex Virus Infection in Harderian Gland and Lacrimal Gland. Experimental Eye Research, 219, Article ID: 109053. https://doi.org/10.1016/j.exer.2022.109053 |