全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ω-3脂肪酸在儿童哮喘治疗研究中的进展
Advancements in the Research on Omega-3 Fatty Acids for the Treatment of Asthma in Children

DOI: 10.12677/acm.2024.1441107, PP. 923-931

Keywords: 支气管哮喘,ω-3多不饱和脂肪酸,治疗,综述,儿童
Bronchial Asthma
, ω-3 Polyunsaturated Fatty Acids, Treatment, Review, Child

Full-Text   Cite this paper   Add to My Lib

Abstract:

哮喘是一种广泛存在的呼吸系统疾病,在全球范围内具有相当大的影响力,其影响遍及不同地域,在不同人群中的发病率从1%到18%不等。从一系列观察性和干预性研究中收集到的数据表明了n-3脂肪酸在改善炎症方面的潜在治疗能力,这与哮喘发病机制密切相关。因此,ω-3多不饱和脂肪酸(ω-3 PUFAs)已成为目前研究的一个焦点,是一种前景广阔治疗哮喘的辅助疗法,其治疗效果的机制是多方面的,特点是复杂的相互作用,包括两种直接方式,如将花生四烯酸置换为二十碳五烯酸的底物,并随后调节其代谢,以及还有涉及炎症基因转录激活调控变化的间接途径。此外,ω-3 PUFAs还能产生一系列专门的炎症相关介质,即消退素,它们在抑制炎症过程进展方面发挥着协同作用。重要的是,膳食中补充ω-3脂肪酸或其生物活性衍生物对健康的影响微乎其微。因此,通过补充ω-3脂肪酸这一非药物干预策略,有可能为哮喘的治疗带来益处。
Asthma epitomizes a widespread respiratory ailment of considerable global significance, exerting its impact across varied geographical landscapes, with prevalence rates ranging from 1% to 18% across different population cohorts. A synthesis of evidence gleaned from an array of observational and interventional investigations collectively underscores the potential therapeutic prowess of n-3 fatty acids in ameliorating inflammatory cascades, particularly those intricately linked with the pathogenesis of asthma. Consequently, omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have emerged as a focal point of inquiry, representing a promising adjunctive therapeutic avenue in the management of asthma. The mechanistic orchestration underlying the therapeutic effects of ω-3 PUFAs is multifaceted, characterized by intricate interplays encompassing both direct modalities, such as the displacement of arachidonic acid as a substrate for eicosanoid biosynthesis and subsequent modulation of their metabolism, and indirect pathways involving regulatory alterations in the transcriptional activation of inflammatory genes. Furthermore, ω-3 PUFAs engender a repertoire of specialized pro-resolving mediators, notably resolvins, which exert concerted efforts in attenuating the progression of inflammatory processes. Importantly, dietary supplementation with ω-3 fatty acids or their bioactive derivatives has been correlated with negligible adversities on pivotal health indices. Consequently, the burgeoning interest in ω-3 fatty acid supplementation represents a compelling non-pharmacological intervention strategy with the potential to confer therapeutic dividends in the management paradigm of asthma.

References

[1]  Global Initiative for Asthma (2023) Global Strategy for Asthma Management and Prevention. Fontana.
[2]  Ebmeier, S., Thayabaran, D., Braithwaite, I., et al. (2017) Trends in International Asthma Mortality: Analysis of Data from the WHO Mortality Database from 46 Countries (1993-2012). The Lancet, 390, 935-945.
https://doi.org/10.1016/S0140-6736(17)31448-4
[3]  Moore, W.C. and Peters, S.P. (2006) Severe Asthma: An Overview. Journal of Allergy and Clinical Immunology, 117, 487-494.
https://doi.org/10.1016/j.jaci.2006.01.033
[4]  Szefler, S., Weiss, S., Tonascia, J., et al. (2000) Long-Term Effects of Budesonide or Nedocromil in Children with Asthma. The New England Journal of Medicine, 343, 1054-1063.
https://doi.org/10.1056/NEJM200010123431501
[5]  Lee, Y.H., Yoon, S.J., Kim, E.J., et al. (2011) Economic Burden of Asthma in Korea. Allergy and Asthma Proceedings, 32, e35-e40.
https://doi.org/10.2500/aap.2011.32.3479
[6]  刘传合, 洪建国, 尚云晓, 等. 中国16城市儿童哮喘患病率20年对比研究[J]. 中国实用儿科杂志, 2015, 30(8): 596-600.
[7]  Xiang, L., Zhao, J., Zheng, Y., et al. (2016) Uncontrolled Asthma and Its Risk Factors in Chinese Children: A Cross-Sectional Observational Study. Journal of Asthma, 53, 699-706.
https://doi.org/10.3109/02770903.2016.1144199
[8]  Miyata, J. and Arita, M. (2015) Role of Omega-3 Fatty Acids and Their Metabolites in Asthma and Allergic Diseases. Allergology International, 64, 27-34.
https://doi.org/10.1016/j.alit.2014.08.003
[9]  Calder, P.C. (2006) n-3 Polyunsaturated Fatty Acids, Inflammation, and Inflammatory Diseases. The American Journal of Clinical Nutrition, 83, 1505S-1519S.
https://doi.org/10.1093/ajcn/83.6.1505S
[10]  Mickleborough, T.D., Ionescu, A.A. and Rundell, K.W. (2004) Omega-3 Fatty Acids and Airway Hyperresponsiveness in Asthma. Journal of Alternative & Complementary Medicine, 10, 1067-1075.
https://doi.org/10.1089/acm.2004.10.1067
[11]  Farjadian, S., Moghtaderi, M., Kalani, M., et al. (2016) Effects of Omega-3 Fatty Acids on Serum Levels of T-Helper Cytokines in Children with Asthma. Cytokine, 85, 61-66.
https://doi.org/10.1016/j.cyto.2016.06.002
[12]  Ntontsi, P., Photiades, A., Zervas, E, et al. (2021) Genetics and Epigenetics in Asthma. International Journal of Molecular Sciences, 22, Article 2412.
https://doi.org/10.3390/ijms22052412
[13]  Hammad, H. and Lambrecht, B.N. (2021) The Basic Immunology of Asthma. Cell, 184, 2521-2522.
https://doi.org/10.1016/j.cell.2021.04.019
[14]  Olin, J.T. and Wechsler, M.E. (2014) Asthma: Pathogenesis and Novel Drugs for Treatment. BMJ, 349, Article g5517.
https://doi.org/10.1136/bmj.g5517
[15]  Harper, R.W. and Zeki, A.A. (2015) Immunobiology of the Critical Asthma Syndrome. Clinical Reviews in Allergy & Immunology, 48, 54-65.
https://doi.org/10.1007/s12016-013-8407-6
[16]  Nassenstein, C., Kutschker, J., Tumes, D., et al. (2006) Neuro-Immune Interaction in Allergic Asthma: Role of Neurotrophins. Biochemical Society Transactions, 34, 591-593.
https://doi.org/10.1042/BST0340591
[17]  Nagaraj, C., Haitchi, H.M., Heinemann, A., et al. (2017) Increased Expression of p22phox Mediates Airway Hyperresponsiveness in an Experimental Model of Asthma. Antioxidants & Redox Signaling, 27, 1460-1472.
https://doi.org/10.1089/ars.2016.6863
[18]  Sj?berg, L.C., Nilsson, A.Z., Lei, Y., et al. (2017) Interleukin 33 Exacerbates Antigen Driven Airway Hyperresponsiveness, Inflammation and Remodeling in a Mouse Model of Asthma. Scientific Reports, 7, Article No. 4219.
https://doi.org/10.1038/s41598-017-03674-0
[19]  Naveed, S.U., Clements, D., Jackson, D.J., et al. (2017) Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. American Journal of Respiratory and Critical Care Medicine, 195, 1000-1009.
https://doi.org/10.1164/rccm.201604-0822OC
[20]  Manso, L., Reche, M., Padial, M.A., et al. (2012) Diagnostic Tools Assessing Airway Remodelling in Asthma. Allergologia et Immunopathologia, 40, 108-116.
https://doi.org/10.1016/j.aller.2011.11.002
[21]  Trejo Bittar, H.E., Yousem, S.A. and Wenzel, S.E. (2015) Pathobiology of Severe Asthma. Annual Review of Pathology: Mechanisms of Disease, 10, 511-545.
https://doi.org/10.1146/annurev-pathol-012414-040343
[22]  Burdge, G.C. and Calder, P.C. (2006) Dietary Alpha-Linolenic Acid and Health-Related Outcomes: A Metabolic Perspective. Nutrition Research Reviews, 19, 26-52.
https://doi.org/10.1079/NRR2005113
[23]  Arterburn, L.M., Hall, E.B. and Oken, H. (2006) Distribution, Interconversion, and Dose Response of n-3 Fatty Acids in Humans. The American Journal of Clinical Nutrition, 83, 1467S-1476S.
https://doi.org/10.1093/ajcn/83.6.1467S
[24]  李若谷, 李安娜, 张瑞雨, 等. 中国常见食物ω-3脂肪酸含量[J]. 中国食物与营养, 2020, 26(3): 70-77.
[25]  Lee, T.H., Hoover, R.L., Williams, J.D., et al. (1985) Effect of Dietary Enrichment with Eicosapentaenoic and Docosahexaenoic Acids on in Vitro Neutrophil and Monocyte Leukotriene Generation and Neutrophil Function. The New England Journal of Medicine, 312, 1217-1224.
https://doi.org/10.1056/NEJM198505093121903
[26]  Endres, S., Ghorbani, R., Kelley, V.E., et al. (1989) The Effect of Dietary Supplementation with n-3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells. The New England Journal of Medicine, 320, 265-271.
https://doi.org/10.1056/NEJM198902023200501
[27]  Sperling, R.I., Benincaso, A.I., Knoell, C.T., et al. (1993) Dietary Omega-3 Polyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils. Journal of Clinical Investigation, 91, 651-660.
[28]  Schmidt, E.B., Pedersen, J.O., Ekelund, S., et al. (1989) Cod Liver Oil Inhibits Neutrophil and Monocyte Chemotaxis in Healthy Males. Atherosclerosis, 77, 53-57.
https://doi.org/10.1016/0021-9150(89)90009-9
[29]  Schmidt, E.B., Varming, K., Pedersen, J.O., et al. (1992) Long-Term Supplementation with n-3 Fatty Acids, II: Effect on Neutrophil and Monocyte Chemotaxis. Scandinavian Journal of Clinical and Laboratory Investigation, 52, 229-236.
https://doi.org/10.3109/00365519209088790
[30]  Schmidt, E.B., Pedersen, J.O., Varming, K., et al. (1991) n-3 Fatty Acids and Leukocyte Chemotaxis. Effects in Hyperlipidemia and Dose-Response Studies in Healthy Men. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 11, 429-435.
https://doi.org/10.1161/01.ATV.11.2.429
[31]  De Caterina, R., Cybulsky, M.I., Clinton, S.K., et al. (1994) The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 14, 1829-1836.
https://doi.org/10.1161/01.ATV.14.11.1829
[32]  Collie-Duguid, E.S. and Wahle, K.W. (1996) Inhibitory Effect of Fish Oil N-3 Polyunsaturated Fatty Acids on the Expression of Endothelial Cell Adhesion Molecules. Biochemical and Biophysical Research Communications, 220, 969-974.
https://doi.org/10.1006/bbrc.1996.0516
[33]  Hughes, D.A., Southon, S. and Pinder, A.C. (1996) (n-3) Polyunsaturated Fatty Acids Modulate the Expression of Functionally Associated Molecules on Human Monocytes in vitro. The Journal of Nutrition, 126, 603-610.
https://doi.org/10.1093/jn/126.3.603
[34]  Yamada, H., Yoshida, M., Nakano, Y., et al. (2008) In Vivo and in Vitro Inhibition of Monocyte Adhesion to Endothelial Cells and Endothelial Adhesion Molecules by Eicosapentaenoic Acid. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 28, 2173-2179.
https://doi.org/10.1161/ATVBAHA.108.171736
[35]  Miles, E.A., Wallace, F.A. and Calder, P.C. (2000) Dietary Fish Oil Reduces Intercellular Adhesion Molecule 1 and Scavenger Receptor Expression on Murine Macrophages. Atherosclerosis, 152, 43-50.
https://doi.org/10.1016/S0021-9150(99)00446-3
[36]  Sanderson, P. and Calder, P.C. (1998) Dietary Fish Oil Diminishes Lymphocyte Adhesion to Macrophage and Endothelial Cell Monolayers. Immunology, 94, 79-87.
https://doi.org/10.1046/j.1365-2567.1998.00474.x
[37]  Hughes, D.A., Pinder, A.C., Piper, Z., et al. (1996) Fish Oil Supplementation Inhibits the Expression of Major Histocompatibility Complex Class II Molecules and Adhesion Molecules on Human Monocytes. The American Journal of Clinical Nutrition, 63, 267-272.
https://doi.org/10.1093/ajcn/63.2.267
[38]  Luu, N.T., Madden, J., Calder, P.C., et al. (2007) Comparison of the Pro-Inflammatory Potential of Monocytes from Healthy Adults and Those with Peripheral Arterial Disease Using an in vitro Culture Model. Atherosclerosis, 193, 259-268.
https://doi.org/10.1016/j.atherosclerosis.2006.08.050
[39]  Serhan, C.N., Clish, C.B., Brannon, J., et al. (2000) Anti-Microinflammatory Lipid Signals Generated from Dietary N-3 Fatty Acids via Cyclooxygenase-2 and Transcellular Processing: A Novel Mechanism for NSAID and N-3 PUFA Therapeutic Actions. Journal of Physiology and Pharmacology, 51, 643-654.
[40]  Serhan, C.N., Clish, C.B., Brannon, J., et al. (2000) Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. Journal of Experimental Medicine, 192, 1197-1204.
https://doi.org/10.1084/jem.192.8.1197
[41]  Serhan, C.N., Hong, S., Gronert, K., et al. (2002) Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals. Journal of Experimental Medicine, 196, 1025-1037.
https://doi.org/10.1084/jem.20020760
[42]  Serhan, C.N., Chiang, N. and Van Dyke, T.E. (2008) Resolving Inflammation: Dual Anti-Inflammatory and Pro-Resolution Lipid Mediators. Nature Reviews Immunology, 8, 349-361.
https://doi.org/10.1038/nri2294
[43]  Hong, S., Gronert, K., Devchand, P.R., et al. (2003) Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Murine Brain, Human Blood, and Glial Cells. Autacoids in Anti-Inflammation. Journal of Biological Chemistry, 278, 14677-14687.
https://doi.org/10.1074/jbc.M300218200
[44]  Arita, M., Ohira, T., Sun, Y.P., et al. (2007) Resolvin E1 Selectively Interacts with Leukotriene B4 Receptor BLT1 and ChemR23 to Regulate Inflammation. The Journal of Immunology, 178, 3912-3917.
https://doi.org/10.4049/jimmunol.178.6.3912
[45]  Khalfoun, B., Thibault, F., Watier, H., et al. (1997) Docosahexaenoic and Eicosapentaenoic Acids Inhibit in vitro Human Endothelial Cell Production of Interleukin-6. Advances in Experimental Medicine and Biology, 400B, 589-597.
[46]  Yaqoob, P. and Calder, P. (1995) Effects of Dietary Lipid Manipulation upon Inflammatory Mediator Production by Murine Macrophages. Cellular Immunology, 163, 120-128.
https://doi.org/10.1006/cimm.1995.1106
[47]  Lo, C.J., Chiu, K.C., Fu, M., et al. (1999) Fish Oil Decreases Macrophage Tumor Necrosis Factor Gene Transcription by Altering the NF Kappa B Activity. Journal of Surgical Research, 82, 216-221.
https://doi.org/10.1006/jsre.1998.5524
[48]  Babcock, T.A., Novak, T., Ong, E., et al. (2002) Modulation of Lipopolysaccharide-Stimulated Macrophage Tumor Necrosis Factor-Alpha Production by Omega-3 Fatty Acid Is Associated with Differential Cyclooxygenase-2 Protein Expression and Is Independent of Interleukin-10. Journal of Surgical Research, 107, 135-139.
https://doi.org/10.1016/S0022-4804(02)96498-X
[49]  Novak, T.E., Babcock, T.A., Jho, D.H., et al. (2003) NF-Kappa B Inhibition by Omega-3 Fatty Acids Modulates LPS-Stimulated Macrophage TNF-Alpha Transcription. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284, L84-L89.
https://doi.org/10.1152/ajplung.00077.2002
[50]  Zhao, Y., Joshi-Barve, S., Barve, S., et al. (2004) Eicosapentaenoic Acid Prevents LPS-Induced TNF-Alpha Expression by Preventing NF-Kappa B Activation. Journal of the American College of Nutrition, 23, 71-78.
https://doi.org/10.1080/07315724.2004.10719345
[51]  Billiar, T.R., Bankey, P.E., Svingen, B.A., et al. (1988) Fatty Acid Intake and Kupffer Cell Function: Fish Oil Alters Eicosanoid and Monokine Production to Endotoxin Stimulation. Surgery, 104, 343-349.
[52]  Renier, G., Skamene, E., Desanctis, J., et al. (1993) Dietary n-3 Polyunsaturated Fatty Acids Prevent the Development of Atherosclerotic Lesions in Mice. Modulation of Macrophage Secretory Activities. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 13, 1515-1524.
https://doi.org/10.1161/01.ATV.13.10.1515
[53]  Sadeghi, S., Wallace, F.A. and Calder, P.C. (1999) Dietary Lipids Modify the Cytokine Response to Bacterial Lipopolysaccharide in Mice. Immunology, 96, 404-410.
https://doi.org/10.1046/j.1365-2567.1999.00701.x
[54]  Meydani, S.N., Endres, S., Woods, M.M., et al. (1991) Oral (n-3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison between Young and Older Women. The Journal of Nutrition, 121, 547-555.
https://doi.org/10.1093/jn/121.4.547
[55]  Trebble, T.M., Wootton, S.A., Miles, E.A., et al. (2003) Prostaglandin E2 Production and T Cell Function after Fish-Oil Supplementation: Response to Antioxidant Cosupplementation. The American Journal of Clinical Nutrition, 78, 376-382.
https://doi.org/10.1093/ajcn/78.3.376
[56]  Calder, P.C., Bond, J.A., Bevan, S.J., et al. (1991) Effect of Fatty Acids on the Proliferation of Concanavalin A-Stimulated Rat Lymph Node Lymphocytes. International Journal of Biochemistry, 23, 579-588.
https://doi.org/10.1016/0020-711X(87)90052-8
[57]  Calder, P.C., Yaqoob, P., Harvey, D.J., et al. (1994) Incorporation of Fatty Acids by Concanavalin A-Stimulated Lymphocytes and the Effect on Fatty Acid Composition and Membrane Fluidity. Biochemical Journal, 300, 509-518.
https://doi.org/10.1042/bj3000509
[58]  Calder, P.C. and Newsholme, E.A. (1992) Polyunsaturated Fatty Acids Suppress Human Peripheral Blood Lymphocyte Proliferation and Interleukin-2 Production. Clinical Science, 82, 695-700.
https://doi.org/10.1042/cs0820695
[59]  Calder, P.C. and Newsholme, E.A. (1992) Unsaturated Fatty Acids Suppress Interleukin-2 Production and Transferrin Receptor Expression by Concanavalin A-Stimulated Rat Iymphocytes. Mediators of Inflammation, 1, Article ID: 419719.
https://doi.org/10.1155/S0962935192000188
[60]  Wallace, F.A., Miles, E.A., Evans, C., et al. (2001) Dietary Fatty Acids Influence the Production of Th1-but Not Th2-Type Cytokines. Journal of Leukocyte Biology, 69, 449-457.
https://doi.org/10.1189/jlb.69.3.449
[61]  Yaqoob, P., Newsholme, E.A. and Calder, P.C. (1994) The Effect of Dietary Lipid Manipulation on Rat Lymphocyte Subsets and Proliferation. Immunology, 82, 603-610.
[62]  Jolly, C.A., Jiang, Y.H., Chapkin, R.S., et al. (1997) Dietary (n-3) Polyunsaturated Fatty Acids Suppress Murine Lymphoproliferation, Interleukin-2 Secretion, and the Formation of Diacylglycerol and Ceramide. The Journal of Nutrition, 127, 37-43.
https://doi.org/10.1093/jn/127.1.37
[63]  Thies, F., Nebe-von-Caron, G., Powell, J.R., et al. (2001) Dietary Supplementation with Gamma-Linolenic Acid or Fish Oil Decreases T Lymphocyte Proliferation in Healthy Older Humans. The Journal of Nutrition, 131, 1918-1927.
https://doi.org/10.1093/jn/131.7.1918
[64]  Flesher, R.P., Herbert, C. and Kumar, R.K. (2014) Resolvin E1 Promotes Resolution of Inflammation in a Mouse Model of an Acute Exacerbation of Allergic Asthma. Clinical Science, 126, 805-814.
https://doi.org/10.1042/CS20130623
[65]  Levy, B.D., Kohli, P., Gotlinger, K., et al. (2007) Protectin D1 Is Generated in Asthma and Dampens Airway Inflammation and Hyperresponsiveness. The Journal of Immunology, 178, 496-502.
https://doi.org/10.4049/jimmunol.178.1.496
[66]  徐雨婷. n-3多不饱和脂肪酸对SKH-1小鼠皮肤急性光损伤的保护作用和机制研究[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2018.
[67]  Olsen, S.F., ?sterdal, M.L., Salvig, J.D., et al. (2008) Fish Oil Intake Compared with Olive Oil Intake in Late Pregnancy and Asthma in the offspring: 16 y of Registry-Based Follow-Up from a Randomized Controlled Trial. The American Journal of Clinical Nutrition, 88, 167-175.
https://doi.org/10.1093/ajcn/88.1.167
[68]  Gürdeniz, G., Kim, M., Brustad, N., et al. (2023) Furan Fatty Acid Metabolite in Newborns Predicts Risk of Asthma. Allergy, 78, 429-438.
https://doi.org/10.1111/all.15554
[69]  Papamichael, M.M., Katsardis, C., Lambert, K., et al. (2019) Efficacy of a Mediterranean Diet Supplemented with Fatty Fish in Ameliorating Inflammation in Paediatric Asthma: A Randomised Controlled Trial. Journal of Human Nutrition and Dietetics, 32, 185-197.
https://doi.org/10.1111/jhn.12609

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133