|
Applied Physics 2024
全光纤超短脉冲掺铒光纤自相似放大系统研究
|
Abstract:
本文研究了1.5 μm波段基于全光纤结构的超短脉冲掺铒光纤自相似放大器。采用正常色散的掺铒增益光纤分析脉冲在放大过程中的自相似演化过程。实验将种子源输出的重复频率为44 MHz,脉冲宽度为797 fs的信号光经预放大级,用高增益正色散掺铒光纤将种子源输出的孤子脉冲整形成抛物线型脉冲,整形后的信号光通过主放大级使用双向泵浦方式将0.43 mW的种子光输出功率放大到60.14 mW,实现主放大级功率放大且光谱宽度为61.69 nm,脉冲宽度1.82 ps。最后经2.3 m长的普通单模光纤(SMF)进行压缩。最终实现了平均输出功率60.14 mW,脉冲宽度83 fs,峰值功率16.85 kW的高功率自相似超短脉冲输出。
This article studied 1.5 μm band ultra short pulse erbium-doped fiber self similarity amplifier based on all fiber structure, and analyzed the self similarity evolution process of pulses during amplification using erbium-doped gain fibers with normal dispersion. In the experiment, the signal light output by the seed source with a repetition frequency of 44 MHz and a pulse width of 797 fs was subjected to a pre amplification stage. The soliton pulse output by the seed source was formed into a parabolic pulse using a high gain positive dispersion erbium-doped fiber. The shaped signal light was amplified from 0.43 mW to 60.14 mW using a bidirectional pump method in the main amplification stage, achieving power amplification in the main amplification stage with a spectral width of 61.69 nm and a pulse width of 1.82 ps. Finally, it was compressed using a 2.3-meter-long ordinary single-mode fiber (SMF). Ultimately, a high-power self similar ultra short pulse output was achieved with an average output power of 60.14 mW, a pulse width of 83 fs, and a peak power of 16.85 kW.
[1] | 于峰, 葛廷武, 代京京, 等. 全光纤结构超短脉冲光纤放大器[J]. 光电工程, 2011, 38(3): 115-118. |
[2] | Hua, Y., Chang, G., K?rtner, F.X., et al. (2018) Pre-Chirp Managed, Core-Pumped Nonlinear PM Fiber Amplifier Delivering Sub-100-fs and High Energy (10 nJ) Pulses with Low Noise. Optics Express, 26, 6427-6438. https://doi.org/10.1364/OE.26.006427 |
[3] | 李莉苹, 张爱玲. 正色散光纤中产生自相似脉冲的数值模拟[J]. 天津理工大学学报, 2011, 27(3): 1-5. |
[4] | Dudley, J.M., Finot, C., Richardson, D.J., et al. (2007) Self-Similarity in Ultrafast Nonlinear Optics. Nature Physics, 3, 597-603. https://doi.org/10.1038/nphys705 |
[5] | 江光裕, 陈凤英, 龚勇清, 等. 高非线性光纤产生自相似抛物线脉冲的特性研究[J]. 光学技术, 2010, 36(2): 269-273. |
[6] | Li, W., Luo, D., Liu, Y., et al. (2020) 130 W, 180 fs Ultrafast Yb-Doped Fiber Frequency Comb Based on Chirped-Pulse Fiber Amplification. Optics Express, 28, 4817-4824. https://doi.org/10.1364/OE.386211 |
[7] | 吴正国. 掺铒光纤放大器关键技术研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2020. |
[8] | Fermann, M.E., Kruglov, V.I., Thomsen, B.C., et al. (2000) Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Physical Review Letters, 84, 6010-6013. https://doi.org/10.1103/PhysRevLett.84.6010 |
[9] | Oktem, B., ülgüdür, C. and Ilday, F. (2010) Soliton-Similariton Fibre Laser. Nature Photonics, 4, 307-311. https://doi.org/10.1038/nphoton.2010.33 |
[10] | Liu, W., Schimpf, D.N., Eidam, T., et al. (2015) Pre-Chirp Managed Nonlinear Amplification in Fibers Delivering 100 W, 60 fs Pulses. Optics Letters, 40, 151-154. https://doi.org/10.1364/OL.40.000151 |
[11] | 李源. 高能量窄脉宽飞秒激光自相似放大系统的研究[D]: [硕士学位论文]. 天津: 天津大学, 2018. |
[12] | Graini, L. and Ortac, B. (2020) Spatiotemporal Dynamics of Self-Similar Parabolic Pulse Evolution in Multimode Fibers. arXiv: 2006.11133. |
[13] | 贺明洋, 李敏, 袁帅, 等. 高功率飞秒自相似光纤激光放大系统[J]. 中国激光, 2020, 47(3): 255-260. |
[14] | Du, L., Jin, C.H., Yang, Z., et al. (2022) Broadband Fiber Chirped-Pulse Amplification System Based on Parabolic Evolution. Acta Photonica Sinica, 51, 1114002. https://doi.org/10.3788/gzxb20225111.1114002 |
[15] | 石郑楠. 2μm波段自相似脉冲的理论与实验研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2020. |