|
基于常规MRI特征的脑胶质瘤IDH1基因型预测模型的建立与验证
|
Abstract:
目的:基于常规MRI特征构建脑胶质瘤异柠檬酸脱氢酶1 (isocitrate dehydrogenase 1, IDH1)基因型的预测模型,并对模型进行验证。方法:回顾性分析254例脑胶质瘤患者的临床资料及术前MRI图像,采用随机分组的方法按约7:3比例分为训练集(n = 177)和验证集(n = 77)。收集其影像学特征,使用单因素分析、多因素逐步回归分析筛选特征后建立Logistic回归预测模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under curve, AUC)检验模型的预测效能,并采用Hosmer-Lemeshow检验模型的拟合优度,同时绘制校准曲线及决策曲线。结果:单因素分析与多因素逐步回归分析显示T2-Flair错配、强化特点、皮层侵犯3个变量差异有统计学意义,采用3个MR特征构建多因素Logistic预测模型并进行验证,结果显示该模型在训练集和验证集的AUC分别为0.832和0.828,Hosmer-Lemeshow检验结果显示模型具有良好的拟合度(训练集χ2 = 4.568,p = 0.335,验证集χ2 = 2.744,p = 0.433),校准曲线显示模型的校准度较好,决策曲线分析表明模型具有较高的净收益。结论:基于常规MRI特征构建的预测模型可有效预测脑胶质瘤IDH1基因型。
Objective: To develop and validate a predictive model for the genotype of isocitrate dehydrogenase 1 (IDH1) in gliomas based on MRI features. Methods: The clinical and preoperative MRI data of 254 patients with glioma were analyzed retrospectively. All patients were randomly divided into a training set (n = 177) and a validation set (n = 77) according to a ratio of 7:3. Imaging features were collected and utilized to establish a Logistic regression predictive model, following feature selection through univariate analysis and multivariate stepwise regression analysis. The model’s predictive performance was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and the Hosmer-Lemeshow test for goodness of fit, along with the generation of calibration and decision curves. Results: Univariate and multivariate stepwise regression analyses revealed statistically significant differences in three variables: T2-Flair mismatch sign, enhancement pattern, and cortical invasion. A multivariate Logistic predictive model was constructed using these three MRI features and subsequently validated. The results demonstrated that the model achieved AUCs of 0.832 and 0.828 in the training and validation sets, respectively. The Hosmer-Lemeshow test indicated a good model fit (training set χ2 = 4.568, p = 0.335; validation set χ2 = 2.744, p = 0.433). Calibration curves showed that the model was well-calibrated, and decision curve analysis indicated that the model had a high net benefit. Conclusion: The predictive model based on MRI features can effectively predict the IDH1 genotype in gliomas.
[1] | Ostrom, Q.T., Bauchet, L., Davis, F.G., et al. (2014) The Epidemiology of Glioma in Adults: A “State of the Science” Review. Neuro-Oncology, 16, 896-913. https://doi.org/10.1093/neuonc/nou087 |
[2] | Louis, D.N., Perry, A., Reifenberger, G., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820. https://doi.org/10.1007/s00401-016-1545-1 |
[3] | Louis, D.N., Perry, A., Wesseling, P., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106 |
[4] | Yan, H., Parsons, D.W., Jin, G., et al. (2009) IDH1 and IDH2 Mutations in Gliomas. The New England Journal of Medicine, 360, 765-773. https://doi.org/10.1056/NEJMoa0808710 |
[5] | Weller, M., Van Den Bent, M., Preusser, M., et al. (2021) EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nature Reviews Clinical Oncology, 18, 170-186. https://doi.org/10.1038/s41571-020-00447-z |
[6] | Choi, Y., Nam, Y., Lee, Y.S., et al. (2020) IDH1 Mutation Prediction Using MR-Based Radiomics in Glioblastoma: Comparison between Manual and Fully Automated Deep Learning-Based Approach of Tumor Segmentation. European Journal of Radiology, 128, Article ID: 109031. https://doi.org/10.1016/j.ejrad.2020.109031 |
[7] | Tan, Y., Zhang, S.T., Wei, J.W., et al. (2019) A Radiomics Nomogram May Improve the Prediction of IDH Genotype for Astrocytoma before Surgery. Eurpean Radiology, 29, 3325-3337. https://doi.org/10.1007/s00330-019-06056-4 |
[8] | Wang, J., Hu, Y., Zhou, X., et al. (2022) A Radiomics Model Based on DCE-MRI and DWI May Improve the Prediction of Estimating IDH1 Mutation and Angiogenesis in Gliomas. European Journal of Radiology, 147, Article ID: 110141. https://doi.org/10.1016/j.ejrad.2021.110141 |
[9] | Wang, N., Xie, S.Y., Liu, H.M., et al. (2019) Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q Status. Translational Oncology, 12, 749-756. https://doi.org/10.1016/j.tranon.2019.02.013 |
[10] | Patel, S.H., Poisson, L.M., Brat, D.J., et al. (2017) T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-Grade Gliomas: A TCGA/TCIA Project. Clinical Cancer Research, 23, 6078-6085. https://doi.org/10.1158/1078-0432.CCR-17-0560 |
[11] | 林坤, 王晓明. Nomogram在脑胶质瘤MR术前病理分级中的应用[J]. 中国医学影像学杂志, 2023, 31(5): 442-447. |
[12] | Hartmann, M., Jansen, O., Egelhof, T., et al. (1998) Effect of Brain Edema on the Recurrence Pattern of Malignant Gliomas. Der Radiologe, 38, 948-953. https://doi.org/10.1007/s001170050447 |
[13] | 周小焙. 磁共振影像组学、常规特征与DWI量化特征对脑胶质瘤分级诊断的初步研究[D]: [硕士学位论文]. 衡阳: 南华大学衡阳医学院, 2021. |
[14] | Berzero, G., Di Stefano, A.L., Ronchi, S., et al. (2021) IDH-Wildtype Lower-Grade Diffuse Gliomas: The Importance of Histological Grade and Molecular Assessment for Prognostic Stratification. Neuro-Oncology, 23, 955-966. https://doi.org/10.1093/neuonc/noaa258 |
[15] | Do, Y.A., Cho, S.J., Choi, B.S., et al. (2022) Predictive Accuracy of T2-FLAIR Mismatch Sign for the IDH-Mutant, 1p/19q Noncodeleted Low-Grade Glioma: An Updated Systematic Review and Meta-Analysis. Neuro-Oncology Advances, 4, vdac010. https://doi.org/10.1093/noajnl/vdac010 |
[16] | Adamou, A., Beltsios, E.T. and Papanagiotou, P. (2021) The T2-FLAIR Mismatch Sign as an Imaging Indicator of IDH-Mutant, 1p/19q Non-Codeleted Lower Grade Gliomas: A Systematic Review and Diagnostic Accuracy Meta-Analysis. Diagnostics (Basel, Switzerland), 11, Article No. 1620. https://doi.org/10.3390/diagnostics11091620 |
[17] | 郗艳, 曹胜男, 舒政. T2-T2 FLAIR错配征预测胶质瘤IDH1突变状态的价值[J]. 临床放射学杂志, 2023, 42(3): 391-395. |
[18] | Deguchi, S., Oishi, T., Mitsuya, K., et al. (2020) Clinicopathological Analysis of T2-FLAIR Mismatch Sign in Lower-Grade Gliomas. Scientific Reports, 10, Article No. 10113. https://doi.org/10.1038/s41598-020-67244-7 |
[19] | Kickingereder, P., Sahm, F., Radbruch, A., et al. (2015) IDH Mutation Status Is Associated with a Distinct Hypoxia/Angiogenesis Transcriptome Signature Which Is Non-Invasively Predictable with rCBV Imaging in Human Glioma. Scientific Reports, 5, Article No. 16238. https://doi.org/10.1038/srep16238 |
[20] | Qi, S., Yu, L., Li, H., et al. (2014) Isocitrate Dehydrogenase Mutation Is Associated with Tumor Location and Magnetic Resonance Imaging Characteristics in Astrocytic Neoplasms. Oncology Letters, 7, 1895-1902. https://doi.org/10.3892/ol.2014.2013 |
[21] | Nishiyama, Y., Sasaki, H., Nagahisa, S., et al. (2014) Radiological Features of Supratentorial Gliomas Are Associated with Their Genetic Aberrations. Neurosurgical Review, 37, 291-299. https://doi.org/10.1007/s10143-013-0515-5 |
[22] | Cao, M., Suo, S., Zhang, X., et al. (2021) Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. BioMed Research International, 2021, Article ID: 1235314. https://doi.org/10.1155/2021/1235314 |
[23] | 夏晓亮, 夏云宝, 陈利华, 等. 基于MRI特征的脑胶质瘤异柠檬酸脱氢酶1表达预测研究[J]. 东南国防医药, 2020, 22(3): 262-267. |
[24] | Balss, J., Meyer, J., Mueller, W., et al. (2008) Analysis of the IDH1 Codon 132 Mutation in Brain Tumors. Acta Neuropathologica, 116, 597-602. https://doi.org/10.1007/s00401-008-0455-2 |