全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

罕见病诊疗现状及发展展望
Current Status and Future Prospects of Diagnosis and Treatment for Rare Diseases

DOI: 10.12677/acm.2024.1441076, PP. 681-688

Keywords: 罕见病,诊疗现状,未来展望
Rare Diseases
, Current Diagnosis and Treatment Status, Future Prospects

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着分子诊断技术的发展,疾病精准诊疗取得重大进展。罕见病是对分子诊断依赖较大的一类疾病,尽管其患病率低,但由于病种繁多,累积发病人数仍然庞大。目前,受医疗技术、医生经验、患者意识及经济水平等因素的影响,罕见病患者在诊治过程中仍面临较多困境。但随着技术的进步,分子诊断效率的提高,罕见病的早期诊断和个体化治疗有了希望。同时,基因编辑等新兴治疗策略的发展也为罕见病患者带来了更多治疗机会。我们期待未来罕见病研究的深入,疾病治疗的创新以及全球合作的加强,以提高罕见病的诊断率和治疗效果,减轻患者和社会的负担。本文综述了当前罕见病诊疗的现状,并总结了对未来的展望。
With the evolution of molecular diagnostic technologies, there has been a significant leap forward in the precision diagnosis and treatment of diseases. Rare diseases, which exhibit a high dependency on molecular diagnostics. Despite their relatively low prevalence, the extensive variety of these diseases results in a considerable overall number of individuals affected. Currently, the management of rare diseases is complicated by factors such as medical technological advancements, physician expertise, patient awareness, and socioeconomic status, leading to numerous challenges in the diagnostic and therapeutic journey of these patients. However, with technological advancements and improvements in the efficiency of molecular diagnostics, there is newfound hope for the early detection and personalized management of rare diseases. Additionally, the development of innovative therapeutic strategies, including gene editing, has expanded the therapeutic possibilities for patients suffering from rare diseases. The anticipation is for a deepened research focus on rare diseases, innovative approaches in disease management, and enhanced global collaboration to improve diagnostic accuracy and therapeutic outcomes for rare diseases, thereby alleviating the burden on both patients and society at large. This review delineates the current landscape of diagnosis and treatment for rare diseases and summarizes the future outlook.

References

[1]  World Health Organization (2006) The Selection and Use of Essential Medicines: Report of the WHO Expert Committee, 2005; (Including the 14th Model List of Essential Medicines); [WHO Expert Committee on the Selection and Use of Essential Medicines, Geneva, 7-11 March 2005]. World Health Organization, Geneva.
[2]  Franco, P. (2013) Orphan Drugs: The Regulatory Environment. Drug Discovery Today, 18, 163-172.
https://doi.org/10.1016/j.drudis.2012.08.009
[3]  Arno, P.S., Bonuck, K. and Davis, M. (1995) Rare Diseases, Drug Development, and AIDS: The Impact of the Orphan Drug Act. The Milbank Quarterly, 73, 231-252.
https://doi.org/10.2307/3350258
[4]  马端, 李定国, 张学. 中国罕见病防治的机遇与挑战[J]. 中国循证儿科杂志, 2011, 6(2): 81-82.
[5]  Richter, T., Nestler-Parr, S., Babela, R., et al. (2015) Rare Disease Terminology and Definitions—A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research, 18, 906-914.
https://doi.org/10.1016/j.jval.2015.05.008
[6]  Nguengang, W.S., Lambert, D.M., Olry, A., et al. (2020) Estimating Cumulative Point Prevalence of Rare Diseases: Analysis of the Orphanet Database. European Journal of Human Genetics: EJHG, 28, 165-173.
https://doi.org/10.1038/s41431-019-0508-0
[7]  Ferreira, C.R. (2019) The Burden of Rare Diseases. American Journal of Medical Genetics. Part A, 179, 885-892.
https://doi.org/10.1002/ajmg.a.61124
[8]  Hall, J.G., Powers, E.K., Mcllvaine, R.T., et al. (1978) The Frequency and Financial Burden of Genetic Disease in a Pediatric Hospital. American Journal of Medical Genetics, 1, 417-436.
https://doi.org/10.1002/ajmg.1320010405
[9]  Yoon, P.W. (1997) Contribution of Birth Defects and Genetic Diseases to Pediatric Hospitalizations: A Population-Based Study. Archives of Pediatrics & Adolescent Medicine, 151, 1096-1103.
https://doi.org/10.1001/archpedi.1997.02170480026004
[10]  Angelis, A., Tordrup, D. and Kanavos, P. (2015) Socio-Economic Burden of Rare Diseases: A Systematic Review of Cost of Illness Evidence. Health Policy (Amsterdam, Netherlands), 119, 964-979.
https://doi.org/10.1016/j.healthpol.2014.12.016
[11]  Cohen, J.S. and Biesecker, B.B. (2010) Quality of Life in Rare Genetic Conditions: A Systematic Review of the Literature. American Journal of Medical Genetics. Part A, 152, 1136-1156.
https://doi.org/10.1002/ajmg.a.33380
[12]  Pelentsov, L.J., Fielder, A.L., Laws, T.A., et al. (2016) The Supportive Care Needs of Parents with a Child with a Rare Disease: Results of an Online Survey. BMC Family Practice, 17, Article No. 88.
https://doi.org/10.1186/s12875-016-0488-x
[13]  The Lancet Diabetes Endocrinology (2019) Spotlight on Rare Diseases. The Lancet. Diabetes & Endocrinology, 7, 75.
https://doi.org/10.1016/S2213-8587(19)30006-3
[14]  Kvarnung, M. and Nordgren, A. (2017) Intellectual Disability & Rare Disorders: A Diagnostic Challenge. In: de la Paz, M.P., Taruscio, D. and Groft, S.C., Eds., Rare Diseases Epidemiology: Update and Overview, Springer, Berlin, 39-54.
https://doi.org/10.1007/978-3-319-67144-4_3
[15]  Almalki, Z.S., Alahmari, A.K., Guo, J.J., et al. (2012) Access to Orphan Drugs in the Middle East: Challenge and Perspective. Intractable & Rare Diseases Research, 1, 139-143.
https://doi.org/10.5582/irdr.2012.v1.4.139
[16]  Giovannini, M., Luzzati, M., Ferrara, G., et al. (2018) Common Symptoms for a Rare Disease in a Girl with Sarcoidosis: A Case Report. Italian Journal of Pediatrics, 44, Article No. 74.
https://doi.org/10.1186/s13052-018-0517-6
[17]  Girirajan, S., Rosenfeld, J.A., Coe, B.P., et al. (2012) Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants. The New England Journal of Medicine, 367, 1321-1331.
https://doi.org/10.1056/NEJMoa1200395
[18]  Anderson, M., Elliott, E.J. and Zurynski, Y.A. (2013) Australian Families Living with Rare Disease: Experiences of Diagnosis, Health Services Use and Needs for Psychosocial Support. Orphanet Journal of Rare Diseases, 8, Article No. 22.
https://doi.org/10.1186/1750-1172-8-22
[19]  Zurynski, Y., Deverell, M., Dalkeith, T., et al. (2017) Australian Children Living with Rare Diseases: Experiences of Diagnosis and Perceived Consequences of Diagnostic Delays. Orphanet Journal of Rare Diseases, 12, Article No. 68.
https://doi.org/10.1186/s13023-017-0622-4
[20]  Kempf, L., Goldsmith, J.C. and Temple, R. (2018) Challenges of Developing and Conducting Clinical Trials in Rare Disorders. American Journal of Medical Genetics. Part A, 176, 773-783.
https://doi.org/10.1002/ajmg.a.38413
[21]  Asbury, C.H. (1991) The Orphan Drug Act. The First 7 Years. JAMA, 265, 893-897.
https://doi.org/10.1001/jama.1991.03460070075046
[22]  Fantini, B. and Vaccaro, C.M. (2019) Value Based Healthcare for Rare Diseases: Efficiency, Efficacy, Equity. Annali DellIstituto Superiore Di Sanita, 55, 251-257.
[23]  Ahmed, M.A., Okour, M., Brundage, R., et al. (2019) Orphan Drug Development: The Increasing Role of Clinical Pharmacology. Journal of Pharmacokinetics and Pharmacodynamics, 46, 395-409.
https://doi.org/10.1007/s10928-019-09646-3
[24]  Divino, V., DeKoven, M., Kleinrock, M., et al. (2016) Orphan Drug Expenditures in the United States: A Historical and Prospective Analysis, 2007-18. Health Affairs (Project Hope), 35, 1588-1594.
https://doi.org/10.1377/hlthaff.2016.0030
[25]  Senior, M. (2022) Orphan Drugs: From Niche to Mainstream. MJH Life Sciences, 42, 32-33.
[26]  K?lker, S., Gleich, F., Mütze, U., et al. (2022) Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Frontiers in Endocrinology, 13, Article ID: 832063.
https://doi.org/10.3389/fendo.2022.832063
[27]  张波, 张抒扬, 屈静晗, 等. 多准则决策分析应用于罕见病药品临床综合评价的专家共识(2022) [J]. 罕见病研究, 2022, 1(2): 158-177.
[28]  Marwaha, S., Knowles, J.W. and Ashley, E.A. (2022) A Guide for the Diagnosis of Rare and Undiagnosed Disease: Beyond the Exome. Genome Medicine, 14, Article No. 23.
https://doi.org/10.1186/s13073-022-01026-w
[29]  顾学范, 韩连书, 余永国. 中国新生儿遗传代谢病筛查现状及展望[J]. 罕见病研究, 2022, 1(1): 13-19.
[30]  Fernández-Marmiesse, A., Gouveia, S. and Couce, M.L. (2018) NGS Technologies as a Turning Point in Rare Disease Research, Diagnosis and Treatment. Current Medicinal Chemistry, 25, 404-432.
https://doi.org/10.2174/0929867324666170718101946
[31]  Souche, E., Beltran, S., Brosens, E., et al. (2022) Recommendations for Whole Genome Sequencing in Diagnostics for Rare Diseases. European Journal of Human Genetics, 30, 1017-1021.
https://doi.org/10.1038/s41431-022-01113-x
[32]  Choi, M., Scholl, U.I., Ji, W., et al. (2009) Genetic Diagnosis by Whole Exome Capture and Massively Parallel DNA Sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 19096-19101.
https://doi.org/10.1073/pnas.0910672106
[33]  Neveling, K., Feenstra, I., Gilissen, C., et al. (2013) A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases. Human Mutation, 34, 1721-1726.
https://doi.org/10.1002/humu.22450
[34]  喻长顺, 于世辉. 罕见病及其基因诊断的发展现状[J]. 海南医学, 2019, 30(S1): 56-67.
[35]  Lunke, S., Bouffler, S.E., Patel, C.V., et al. (2023) Integrated Multi-Omics for Rapid Rare Disease Diagnosis on a National Scale. Nature Medicine, 29, 1681-1691.
https://doi.org/10.1038/s41591-023-02401-9
[36]  Birgmeier, J., Haeussler, M., Deisseroth, C.A., et al. (2020) AMELIE Speeds Mendelian Diagnosis by Matching Patient Phenotype and Genotype to Primary Literature. Science Translational Medicine, 12, Eaau9113.
https://doi.org/10.1126/scitranslmed.aau9113
[37]  Sundaram, L., Gao, H., Padigepati, S.R., et al. (2018) Predicting the Clinical Impact of Human Mutation with Deep Neural Networks. Nature Genetics, 50, 1161-1170.
https://doi.org/10.1038/s41588-018-0167-z
[38]  Jaganathan, K., Panagiotopoulou, S.K., McRae, J.F., et al. (2019) Predicting Splicing from Primary Sequence with Deep Learning. Cell, 176, 535-548.E24.
https://doi.org/10.1016/j.cell.2018.12.015
[39]  Brasil, S., Pascoal, C., Francisco, R., et al. (2019) Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes, 10, Article No. 978.
https://doi.org/10.3390/genes10120978
[40]  Carter, H., Douville, C., Stenson, P.D., et al. (2013) Identifying Mendelian Disease Genes with the Variant Effect Scoring Tool. BMC Genomics, 14, S3.
https://doi.org/10.1186/1471-2164-14-S3-S3
[41]  Alirezaie, N., Kernohan, K.D., Hartley, T., et al. (2018) ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. American Journal of Human Genetics, 103, 474-483.
https://doi.org/10.1016/j.ajhg.2018.08.005
[42]  Orange, J.S., Glessner, J.T., Resnick, E., et al. (2011) Genome-Wide Association Identifies Diverse Causes of Common Variable Immunodeficiency. The Journal of Allergy and Clinical Immunology, 127, 1360-1367.E6.
https://doi.org/10.1016/j.jaci.2011.02.039
[43]  Liehr, T., Acquarola, N., Pyle, K., et al. (2018) Next Generation Phenotyping in Emanuel and Pallister-Killian Syndrome Using Computer-Aided Facial Dysmorphology Analysis of 2D Photos. Clinical Genetics, 93, 378-381.
https://doi.org/10.1111/cge.13087
[44]  Hoy, S.M. (2019) Elexacaftor/Ivacaftor/Tezacaftor: First Approval. Drugs, 79, 2001-2007.
https://doi.org/10.1007/s40265-019-01233-7
[45]  Oldenburg, J., Mahlangu, J.N., Kim, B., et al. (2017) Emicizumab Prophylaxis in Hemophilia A with Inhibitors. The New England Journal of Medicine, 377, 809-818.
https://doi.org/10.1056/NEJMoa1703068
[46]  Tambuyzer, E., Vandendriessche, B., Austin, C.P., et al. (2020) Therapies for Rare Diseases: Therapeutic Modalities, Progress and Challenges Ahead. Nature Reviews. Drug Discovery, 19, 93-111.
https://doi.org/10.1038/s41573-019-0049-9
[47]  Li, C. and Samulski, R.J. (2020) Engineering Adeno-Associated Virus Vectors for Gene Therapy. Nature Reviews Genetics, 21, 255-272.
https://doi.org/10.1038/s41576-019-0205-4
[48]  Scott, L.J. (2015) Alipogene Tiparvovec: A Review of Its Use in Adults with Familial Lipoprotein Lipase Deficiency. Drugs, 75, 175-182.
https://doi.org/10.1007/s40265-014-0339-9
[49]  Shahryari, A., Saghaeian, J.M., Mohammadi, S., et al. (2019) Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in Genetics, 10, Article No. 868.
https://doi.org/10.3389/fgene.2019.00868
[50]  Smalley, E. (2017) First AAV Gene Therapy Poised for Landmark Approval. Nature Biotechnology, 35, 998-999.
https://doi.org/10.1038/nbt1117-998
[51]  Cavazzana-Calvo, M., Payen, E., Negre, O., et al. (2010) Transfusion Independence and HMGA2 Activation after Gene Therapy of Human β-Thalassaemia. Nature, 467, 318-322.
https://doi.org/10.1038/nature09328
[52]  Aiuti, A., Slavin, S., Aker, M., et al. (2002) Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science (New York, N.Y.), 296, 2410-2413.
https://doi.org/10.1126/science.1070104
[53]  Garrelfs, S.F., Frishberg, Y., Hulton, S.A., et al. (2021) Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. The New England Journal of Medicine, 384, 1216-1226.
https://doi.org/10.1056/NEJMoa2021712
[54]  Pai, S.-Y., Logan, B.R., Griffith, L.M., et al. (2014) Transplantation Outcomes for Severe Combined Immunodeficiency, 2000-2009. The New England Journal of Medicine, 371, 434-446.
https://doi.org/10.1056/NEJMoa1401177
[55]  Chan, J.K.Y. and G?therstr?m, C. (2014) Prenatal Transplantation of Mesenchymal Stem Cells to Treat Osteogenesis Imperfecta. Frontiers in Pharmacology, 5, Article No. 223.
https://doi.org/10.3389/fphar.2014.00223
[56]  Schwartz, S.D., Regillo, C.D., Lam, B.L., et al. (2015) Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-Up of Two Open-Label Phase 1/2 Studies. The Lancet (London, England), 385, 509-516.
https://doi.org/10.1016/S0140-6736(14)61376-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133