|
星图相关矩阵的Moore-Penrose广义逆
|
Abstract:
本文利用矩阵的低秩性、分块性等性质给出了星图的邻接矩阵、关联矩阵、距离矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵的Moore-Penrose广义逆。以上结论对进一步研究星图的代数性质提供了理论支撑,同时对研究其他图类的相关矩阵的广义逆提供了理论参考。
Based on the properties of the low rank, partitioned matrix structure, we give the explicit form for the Moore-Penrose inverse of the adjacency matrix, incidence matrix, distance matrix, Laplacian matrix and signless-Laplacian matrix of star graphs, which provides theoretical support for further study of the algebraic properties of star graphs and theoretical aid for the study of the generalized inverse for matrices of other graphs.
[1] | Ben-Israel, A. and Greville, T.N.E. (2003) Generalized Inverses: Theory and Applications. 2nd Edition, Springer, New York, 40-51. |
[2] | Azimi, A. and Bapat, R.B. (2018) Moore-Penrose Inverse of the Incidence Matrix of a Distance Regular Graph. Linear Algebra and Its Applications, 551, 92-103. https://doi.org/10.1016/j.laa.2018.04.003 |
[3] | Azimi, A. and Bapat, R.B. (2019) The Moore-Penrose Inverse of the Incidence Matrix of Complete Multipartite and Bi-Block Graphs. Discrete Mathematics, 342, 2393-2401. https://doi.org/10.1016/j.disc.2019.05.007 |
[4] | Balaji, R., Bapat, R.B. and Goel, S. (2021) An Inverse Formula for the Distance Matrix of a Wheel Graph with an Even Number of Vertices. Linear Algebra and Its Applications, 610, 274-292. https://doi.org/10.1016/j.laa.2020.10.003 |
[5] | Hessert, R. and Mallik, S. (2021) Moore-Penrose Inverses of the Signless Laplacian and edge-Laplacian of Graphs. Discrete Mathematics, 344, Article ID: 112451. https://doi.org/10.1016/j.disc.2021.112451 |
[6] | Hessert, R. and Mallik, S. (2023) The Inverse of the Incidence Matrix of a Unicyclic Graph. Linear and Multilinear Algebra, 71, 513-527. https://doi.org/10.1080/03081087.2022.2035307 |
[7] | Alazemi, A., An?eli?, M. and Cvetkovi?-Ili?, D. (2021) The Moore-Penrose Inverse of Symmetric Matrices with Nontrivial Equitable Partitions. Applied Mathematics and Computation, 400, Article ID: 126036. https://doi.org/10.1016/j.amc.2021.126036 |
[8] | 王松桂, 杨振海. 广义逆矩阵及其应用[M]. 北京: 北京工业大学出版社, 1996. |
[9] | Cvetkovi?, D., Rowlinson, P. and Simi?, S. (2010) An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511801518 |
[10] | 程云鹏, 张凯院, 徐仲. 矩阵论[M]. 西安: 西北工业大学出版社, 2006: 220-225. |