|
浅谈新高考数学如何利用高考真题开展数学建模课程
|
Abstract:
数学建模是一种通过数学方法来描述、分析、解决实际问题的过程,它作为一种教学方法,通过实际问题的解决培养了学生全面发展的能力,不仅提高了他们在数学领域的水平,同时也为他们未来的职业和学术生涯奠定了坚实的基础。因此,高中数学课堂应用数学建模思想解决实际问题也是大势所趋,而使用高考真题作为数学建模的实例是一个非常有效的方法,因为高考题目通常设计得很贴近实际问题,涵盖了多个数学领域的知识。对此,本文从六个主要部分系统性地探讨了如何利用高考真题来开展数学建模课程,为教育实践提供了有益的指导和启示。
Mathematical modeling is a process that entails describing, analyzing, and solving practical problems through mathematical methods. As an instructional approach, it fosters students’ comprehensive development by engaging them in solving real-world problems. This not only enhances their proficiency in the realm of mathematics but also establishes a robust foundation for their future careers and academic pursuits. Consequently, the integration of mathematical modeling into high school mathematics classes has become a prevailing trend, aiming to address practical challenges. Employing college entrance examination questions as exemplars of mathematical modeling proves to be a highly effective method, as these questions are typically designed to closely resemble real-world problems and encompass knowledge from various mathematical domains. This paper systematically explores the utilization of authentic college entrance examination questions in conducting mathematical modeling courses, presenting insights across six main sections. The findings offer valuable guidance and enlightenment for educational practices.
[1] | Magazine, M. (2009) Modeling for Insight: A Master Class for Business Analysts. Interfaces, 39, 556-557. |
[2] | Ye, Q.X., Blum, W., Houston, K., et al. (2003) Mathematical Modelling in Education and Culture. https://doi.org/10.1533/9780857099556 |
[3] | Quadling, D.A. (1974) Mathematics as an Educational Task. The Mathematical Gazette, 58, 145-147. https://doi.org/10.2307/3617810 |
[4] | Seto, C., Thomas, M.M., Ng, K.E.D., et al. (2012) Mathematical Modelling for Singapore Primary Classrooms: From a Teacher’s Lens. https://files.eric.ed.gov/fulltext/ED573384.pdf |
[5] | Ann Stillman, G., Blum, W. and Biembengut, M. (2015) Mathematical Modelling in Education Research and Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-18272-8 |
[6] | 教育部考试中心. 中国高考评价体系[M]. 北京: 人民教育出版社, 2020. |
[7] | 教育部考试中心. 中国高考评价体系说明[M]. 北京: 人民教育出版社, 2020. |
[8] | 中华人民共和国教育部. 普通高中数学课程标准(2017年版) [S]. 北京: 人民教育出版社, 2018. |
[9] | 崔鹏. 高中数学建模教学应抓好四个环节[N]. 中国教育报, 2023-05-26(006). |
[10] | 翟立英. 数学建模思想在高中数学课堂教学中的应用研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨师范大学, 2019. |
[11] | 董清艳, 周学君, 龚雨欣. 高中数学建模活动素材开发探究: 从应用题到建模题[J]. 创新教育研究, 2023, 11(9): 2534-2541. |
[12] | 王玲. 高考数学试题对高中数学教学的导向作用分析[J]. 中外交流, 2020, 27(31): 269. |
[13] | 张成斌. 高考数学试题对高中数学教学的导向作用研究[J]. 数学学习与研究, 2023(11): 2-4 |
[14] | 吴立良. 高考数学试题对高中数学教学的导向作用分析[J]. 中学生作文指导, 2020(30): 191. |
[15] | 王赟. 由高考题例谈高中数学建模能力的培养[J]. 数学大世界(上旬版), 2018(11): 80-81. |
[16] | 王加白. 高考试题对高中数学教学的导向作用分析[J]. 试题与研究(教学论坛), 2021(6): 33. |
[17] | Giuseppe, M. and Laura, P. (2012) A First Course in Probability and Markov Chains. John Wiley Sons, Ltd., New York. |
[18] | 舒彤. 关于2020年高考理科数学I卷概率题的研究——马尔科夫链[J]. 数学教学通讯, 2021(12): 82-83. https://doi.org/10.3969/j.issn.1001-8875.2021.12.037 |