全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于FXR信号通路探究肝主疏泄的科学内涵
To Explore the Scientific Connotation of Liver Governing Dispersion Based on FXR Signaling Pathway

DOI: 10.12677/tcm.2024.134092, PP. 598-604

Keywords: 肝主疏泄,FXR,科学内涵
Liver Controlling Dispersion
, FXR, Scientific Connotation

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝主疏泄指肝具有疏通、畅通、宣达功能,与现代医学中FXR在维持机体正常运作方面相似。近年来的中西医研究也印证了藏象肝与FXR在机体生理过程中存在一定相关性。文章归纳了FXR信号通路与肝主疏泄在对脾胃运化及胆汁分泌与排泄、机体津血运行和输布、调畅情志和促进性与生殖等方面具有相似作用,并通过对消化系统、水液代谢、周围血管、脑与精神情绪、生殖代谢功能等常见病与肝主疏泄进行对比分析,发现FXR与肝主疏泄在调节全身机体机能生理功能相似,功能失常后疾病表现方面相同。研究以此为揭示肝主疏泄的分子机制提供可靠依据,并为中西医治疗肝脏代谢相关疾病提供依据,这也可能成为从分子生物学层面科学理解中医理论的新思路。
Liver governing dispersion refers to the liver has the function of dredging, unimpeded and publicity, which is similar to FXR in maintaining the normal operation of the body in modern medicine. In recent years, Chinese and Western medicine research has also confirmed that there is a certain correlation between the liver and FXR in the physiological process of the body. This paper summarizes that FXR signaling pathway and liver governing dispersion have similar effects on spleen and stomach transportation and transformation, bile secretion and excretion, body fluid and blood circulation and distribution, emotional regulation, and promotion and reproduction. Through the comparative analysis of common diseases such as digestive system, water metabolism, peripheral blood vessels, brain and mental emotion, reproductive metabolism function and liver governing dispersion, it is found that FXR and liver governing dispersion are similar in regulating the physiological function of the whole body and the disease performance after dysfunction. This study provides a reliable basis for revealing the molecular mechanism of liver governing dispersion, and provides a basis for the treatment of liver metabolism related diseases by Chinese and Western medicine. This may also become a new idea for scientific understanding of TCM theory from the perspective of molecular biology.

References

[1]  Makishima, M., Okamoto, A.Y., Repa, J.J., et al. (1999) Identification of a Nuclear Receptor for Bile Acids. Science, 284, 1362-1365.
https://doi.org/10.1126/science.284.5418.1362
[2]  Parks, D.J., Blanchard, S.G., Bledsoe, R.K., et al. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 284, 1365-1368.
https://doi.org/10.1126/science.284.5418.1365
[3]  Wang, H., Chen, J., Hollister, K., Sowers, L.C. and Forman, B.M. (1999) Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR. Molecular Cell, 3, 543-553.
https://doi.org/10.1016/S1097-2765(00)80348-2
[4]  Forman, B.M., Goode, E., Chen, J., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites. Cell, 81, 687-693.
https://doi.org/10.1016/0092-8674(95)90530-8
[5]  Teodoro, J.S., Rolo, A.P. and Palmeira, C.M. (2011) Hepatic FXR: Key Regulator of Whole-Body Energy Metabolism. Trends in Endocrinology & Metabolism, 22, 458-466.
https://doi.org/10.1016/j.tem.2011.07.002
[6]  Wang, Y.D., Chen, W.D., Moore, D.D. and Huang, W.D. (2008) FXR: A Metabolic Regulator and Cell Protector. Cell Research, 18, 1087-1095.
https://doi.org/10.1038/cr.2008.289
[7]  Lee, F.Y., Lee, H., Hubbert, M.L., et al. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580.
https://doi.org/10.1016/j.tibs.2006.08.002
[8]  Paik, D., Yao, L., Zhang, Y., et al. (2022) Human Gut Bacteria Produce ΤΗ17-Modulating Bile Acid Metabolites. Nature, 603, 907-912.
https://doi.org/10.1038/s41586-022-04480-z
[9]  Funabashi, M., Grovet, L., Wang, M., et al. (2020) A Metabolic Pathway for Bile Acid Dehydroxylation by the Gut Microbiome. Nature, 582, 566-570.
https://doi.org/10.1038/s41586-020-2396-4
[10]  Arab, J.P., Karpen, S.J., Dawson, P.A., et al. (2017) Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Hepatology, 65, 350-362.
https://doi.org/10.1002/hep.28709
[11]  Joyce, S.A. and Gahan, C.G. (2017) Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases, 35, 169-177.
https://doi.org/10.1159/000450907
[12]  Xie, X., Dong, J., Lu, G., et al. (2020) Increased Circulating Total Bile Acid Levels Were Associated with Organ Failure in Patients with Acute Pancreatitis. BMC Gastroenterology, 20, Article No. 222.
https://doi.org/10.1186/s12876-020-01243-w
[13]  Ahmad, T.R. and Haeusler, R.A. (2019) Bile Acids in Glucose Metabolism and Insulin Signalling—Mechanisms and Research Needs. Nature Reviews Endocrinology, 15, 701-712.
https://doi.org/10.1038/s41574-019-0266-7
[14]  Qiu, Y., Shen, L., Fu, L., et al. (2020) The Glucose-Lowering Effects of α-Glucosidase Inhibitor Require a Bile Acid Signal in Mice. Diabetologia, 63, 1002-1016.
https://doi.org/10.1007/s00125-020-05095-7
[15]  Van De Wiel, S.M.W., Bijsmans, I.T.G.W., Van Mil, S.W.C., et al. (2019) Identification of FDA-Approved Drugs Targeting the Farnesoid X Receptor. Scientific Reports, 9, Article No. 2193.
https://doi.org/10.1038/s41598-019-38668-7
[16]  Wan, Y.D., Zhu, R.X., Pan, X.T. and Sun, T.W. (2020) Bile Acid Supplementation Improves Murine Pancreatitis in Association with the Gut Microbiota. Frontiers in Physiology, 11, Article 650.
https://doi.org/10.3389/fphys.2020.00650
[17]  Martinot, E., Sèdes, L., Baptissart, M., et al. (2017) Bile Acids and Their Receptors. Molecular Aspects of Medicine, 56, 2-9.
https://doi.org/10.1016/j.mam.2017.01.006
[18]  Taoka, H., Yokoyama, Y., Morimoto, K., et al. (2016) Role of Bile Acids in the Regulation of the Metabolic Pathways. World Journal of Diabetes, 7, 260-270.
https://doi.org/10.4239/wjd.v7.i13.260
[19]  Gonzalez, F.J. (2012) Nuclear Receptor Control of Enterohepatic Circulation. Comprehensive Physiology Nuclear Receptor Control of Enterohepatic Circulation, 2, 2811-2828.
https://doi.org/10.1002/cphy.c120007
[20]  Ovadia, C., Perdones-Montero, A., Spagou, K., et al. (2019) Enhanced Microbial Bile Acid Deconjugation and Impaired Ileal Uptake in Pregnancy Repress Intestinal Regulation of Bile Acid Synthesis. Hepatology, 70, 276-293.
https://doi.org/10.1002/hep.30661
[21]  Cao, Y., Xiao, Y., Zhou, K., et al. (2019) FXR Agonist GW4064 Improves Liver and Intestinal Pathology and Alters Bile Acid Metabolism in Rats Undergoing Small Intestinal Resection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317, G108-G115.
https://doi.org/10.1152/ajpgi.00356.2017
[22]  Jiang, L., Zhang, H., Xiao, D., et al. (2021) Farnesoid X Receptor (FXR): Structures and Ligands. Computational and Structural Biotechnology Journal, 19, 2148-2159.
https://doi.org/10.1016/j.csbj.2021.04.029
[23]  Panzitt, K. and Wagner, M. (2021) FXR in Liver Physiology: Multiple Faces to Regulate Liver Metabolism. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166133.
https://doi.org/10.1016/j.bbadis.2021.166133
[24]  高冬梅, 乔明琦, 张惠云, 等. 经前期综合征肝气郁证猕猴模型评价指标[J]. 中医杂志, 2005, 46(12): 931-933.
https://doi.org/10.13288/J.11-2166/R.2005.12.036
[25]  王海军, 乔明琦, 张惠云. 经前期综合征(PMS)肝气逆证猕猴造模及用药血清中性激素检测与分析[J]. 中药药理与临床, 2006, 22(5): 58-59.
[26]  Jia, W., Xie, G. and Jia, W. (2018) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128.
https://doi.org/10.1038/nrgastro.2017.119
[27]  张惠云, 乔明琦, 孙丽. 肝气郁证模型大鼠下丘脑单胺类神经递质分析[J]. 中医杂志, 2008, 49(2): 150-152.
[28]  Mahmoudian Dehkordi, S., Arnold, M., Nho, K., et al. (2019) Altered Bile Acid Profile Associates with Cognitive Impairment in Alzheimer’s Disease—An Emerging Role for Gut Microbiome. Alzheimers & Dementia, 15, 76-92.
[29]  Holmqvist, S., Chutna, O., Bousset, L., et al. (2014) Direct Evidence of Parkinson Pathology Spread from the Gastrointestinal Tract to the Brain in Rats. Acta Neuropathologica, 128, 805-820.
https://doi.org/10.1007/s00401-014-1343-6
[30]  Kim, D.G., Krenz, A., Toussaint, L.E., et al. (2016) Non-Alcoholic Fatty Liver Disease Induces Signs of Alzheimer’s Disease (AD) in Wild-Type Mice and Accelerates Pathological Signs of AD in an AD Model. Journal of Neuroinflammation, 13, Article No. 1.
https://doi.org/10.1186/s12974-015-0467-5
[31]  Zhang, X., Huang, S., Gao, M., et al. (2014) Farnesoid X Receptor (FXR) Gene Deficiency Impairs Urine Concentration in Mice. Proceedings of the National Academy of Sciences of the United States of America, 111, 2277-2282.
https://doi.org/10.1073/pnas.1323977111
[32]  高慧, 王帅. 基于《内经》“木曰敷和”理论对动脉粥样硬化性疾病微探[J/OL]. 辽宁中医药大学学报: 1-8.
https://doi.org/10.13194/j.issn.1673-842x.2023.03.017, 2022-10-27.
[33]  Miyazaki-Anzai, S., Masuda, M., Kohno, S., et al. (2018) Simultaneous Inhibition of FXR and TGR5 Exacerbates Atherosclerotic Formation. Journal of Lipid Research, 59, 1709-1713.
https://doi.org/10.1194/jlr.M087239
[34]  Lauritsen, M.P., Bentzen, J.G., Pinborg, A., et al. (2014) The Prevalence of Polycystic Ovary Syndrome in a Normal Population According to the Rotterdam Criteria versus Revised Criteria Including Anti-Mullerian Hormone. Human Reproduction, 29, 791-801.
https://doi.org/10.1093/humrep/det469
[35]  Yang, Y.L., Zhou, W.W., Wu, S., et al. (2021) Intestinal Flora Is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology, 162, bqab118.
https://doi.org/10.1210/endocr/bqab118
[36]  李云, 刘天宇, 张文军. 肝肠法尼酯X受体在代谢性疾病中的作用研究进展[J]. 天津药学, 2023, 35(1): 71-78.
[37]  Kaeding, J., Bouchaert, E., Bélanger, J., et al. (2008) Activators of the Farnesoid X Receptor Negatively Regulate Androgen Glucuronidation in Human Prostate Cancer LNCAP Cells. Biochemical Journal, 410, 245-253.
https://doi.org/10.1042/BJ20071136
[38]  Takae, K., Nakata, M., Watanabe, T., et al. (2019) Evidence for the Involvement of FXR Signaling in Ovarian Granulosa Cell Function. The Journal of Reproduction and Development, 65, 47-55.
https://doi.org/10.1262/jrd.2018-054
[39]  Han, C.Y. (2018) Update on FXR Biology: Promising Therapeutic Target? International Journal of Molecular Sciences, 19, Article 2069.
https://doi.org/10.3390/ijms19072069
[40]  Thomas, C., Pellicciari, R., Pruzanski, M., et al. (2008) Targeting Bile-Acid Signalling for Metabolic Diseases. Nature Reviews Drug Discovery, 7, 678-693.
https://doi.org/10.1038/nrd2619

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133