|
靶向衰老细胞在骨关节炎治疗中的研究进展
|
Abstract:
细胞衰老是指一种永久性的细胞周期终止状态,能够影响机体的发育及动态平衡。它和许多与衰老相关的疾病有关,比如骨关节炎。目前关于衰老细胞与骨关节炎之间的研究主要集中在寻找能够清除衰老细胞或选择性阻断衰老相关分泌表型(SASP)以阻止疾病进展的药物疗法。随着对细胞衰老和SASP新机制以及其靶点的探索,潜在的治疗方法将不断增加。本文将探讨细胞衰老的相关机制,并讨论针对每个靶点的治疗方案及其优势。
Cellular senescence is a state of permanent cell cycle termination that can affect the development and dynamic homeostasis of the organism. It is associated with many diseases related to aging, such as osteoarthritis. Current research on the link between senescent cells and osteoarthritis is focused on finding drug therapies that can remove senescent cells or selectively block senescence- associated secretory phenotypes (SASPs) to halt disease progression. As new mechanisms of cellular senescence and SASP, as well as their targets, are explored, the potential therapeutic approaches will continue to grow. This article will explore the mechanisms involved in cellular senescence and discuss therapeutic options for each target and their advantages.
[1] | 张荣, 张向东, 赵明宇. 膝骨关节炎发病机制及治疗进展[J]. 风湿病与关节炎, 2019, 8(5): 68-72. |
[2] | Matsuzaki, T., Alvarez-Garcia, O., Mokuda, S., et al. (2018) FoxO Transcription Factors Modulate Autophagy and Proteoglycan 4 in Cartilage Homeostasis and Osteoarthritis. Science Translational Medicine, 10, Eaan0746. https://doi.org/10.1126/scitranslmed.aan0746 |
[3] | Wu, X., Lai, Y., Chen, S., et al. (2022) Kindlin-2 Preserves Integrity of the Articular Cartilage to Protect against Osteoarthritis. Nature Aging, 2, 332-347. https://doi.org/10.1038/s43587-021-00165-w |
[4] | Chen, H., Qin, Z., Zhao, J., et al. (2019) Cartilage-Targeting and Dual MMP-13/PH Responsive Theranostic Nanoprobes for Osteoarthritis Imaging and Precision Therapy. Biomaterials, 225, Article ID: 119520. https://doi.org/10.1016/j.biomaterials.2019.119520 |
[5] | Ye, W., Yang, Z., Cao, F., et al. (2022) Articular Cartilage Reconstruction with TGF-β1-Simulating Self-Assembling Peptide Hydrogel-Based Composite Scaffold. Acta Biomaterialia, 146, 94-106. https://doi.org/10.1016/j.actbio.2022.05.012 |
[6] | Baker, D.J., Wijshake, T., Tchkonia, T., et al. (2011) Clearance of p16Ink4a-Positive Senescent Cells Delays Ageing-Associated Disorders. Nature, 479, 232-236. https://doi.org/10.1038/nature10600 |
[7] | Zhu, J., Yang, S., Qi, Y., et al. (2022) Stem Cell-Homing Hydrogel-Based MiR-29b-5p Delivery Promotes Cartilage Regeneration by Suppressing Senescence in an Osteoarthritis Rat Model. Science Advances, 8, Eabk0011. https://doi.org/10.1126/sciadv.abk0011 |
[8] | Jeon, O.H., Kim, C., Laberge, R.M., et al. (2017) Local Clearance of Senescent Cells Attenuates the Development of Post-Traumatic Osteoarthritis and Creates a Pro-Regenerative Environment. Nature Medicine, 23, 775-781. https://doi.org/10.1038/nm.4324 |
[9] | Martel, J., Ojcius, D.M., Wu, C.Y., et al. (2020) Emerging Use of Senolytics and Senomorphics against Aging and Chronic Diseases. Medicinal Research Reviews, 40, 2114-2131. https://doi.org/10.1002/med.21702 |
[10] | Ocampo, A., Reddy, P., Martinez-Redondo, P., et al. (2016) In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 167, 1719-1733.E12. https://doi.org/10.1016/j.cell.2016.11.052 |
[11] | Chen, Y., Yu, Y., Wen, Y., et al. (2022) A High-Resolution Route Map Reveals Distinct Stages of Chondrocyte Dedifferentiation for Cartilage Regeneration. Bone Research, 10, Article No. 38. https://doi.org/10.1038/s41413-022-00209-w |
[12] | Ogrodnik, M., Salmonowicz, H., Jurk, D., et al. (2019) Expansion and Cell-Cycle Arrest: Common Denominators of Cellular Senescence. Trends in Biochemical Sciences, 44, 996-1008. https://doi.org/10.1016/j.tibs.2019.06.011 |
[13] | Diekman, B.O., Sessions, G.A., Collins, J.A., et al. (2018) Expression of p16INK4a Is a Biomarker of Chondrocyte Aging but Does Not Cause Osteoarthritis. Aging Cell, 17, e12771. https://doi.org/10.1111/acel.12771 |
[14] | Del Rey, M.J., Valín, á., Usategui, A., et al. (2019) Senescent Synovial Fibroblasts Accumulate Prematurely in Rheumatoid Arthritis Tissues and Display an Enhanced Inflammatory Phenotype. Immunity & Ageing, 16, 1-9. https://doi.org/10.1186/s12979-019-0169-4 |
[15] | Xu, M., Bradley, E.W., Weivoda, M.M., et al. (2017) Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72, 780-785. |
[16] | Bijlsma, J.W.J., Berenbaum, F. and Lafeber, F.P.J.G. (2011) Osteoarthritis: An Update with Relevance for Clinical Practice. The Lancet, 377, 2115-2126. https://doi.org/10.1016/S0140-6736(11)60243-2 |
[17] | Farr, J.N., Fraser, D.G., Wang, H., et al. (2016) Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 31, 1920-1929. https://doi.org/10.1002/jbmr.2892 |
[18] | Coppé, J.P., Desprez, P.Y., Krtolica, A., et al. (2010) The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144 |
[19] | Basisty, N., Kale, A., Jeon, O.H., et al. (2020) A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. PLOS Biology, 18, E3000599. https://doi.org/10.1371/journal.pbio.3000599 |
[20] | Pearson, M.J., Herndler-Brandstetter, D., Tariq, M.A., et al. (2017) IL-6 Secretion in Osteoarthritis Patients Is Mediated by Chondrocyte-Synovial Fibroblast Cross-Talk and Is Enhanced by Obesity. Scientific Reports, 7, Article No. 3451. https://doi.org/10.1038/s41598-017-03759-w |
[21] | Kojima, H., Inoue, T., Kunimoto, H., et al. (2013) IL-6-STAT3 Signaling and Premature Senescence. Jak-Stat, 2, E25763. https://doi.org/10.4161/jkst.25763 |
[22] | Loeser, R.F., Goldring, S.R., Scanzello, C.R., et al. (2012) Osteoarthritis: A Disease of the Joint as an Organ. Arthritis and Rheumatism, 64, Article No. 1697. https://doi.org/10.1002/art.34453 |
[23] | Jeon, O.H., Wilson, D.R., Clement, C.C., et al. (2019) Senescence Cell-Associated Extracellular Vesicles Serve as Osteoarthritis Disease and Therapeutic Markers. JCI Insight, 4, e125019. https://doi.org/10.1172/jci.insight.125019 |
[24] | Feng, M., Peng, H., Yao, R., et al. (2020) Inhibition of Cellular Communication Network Factor 1 (CCN1)-Driven Senescence Slows down Cartilage Inflammaging and Osteoarthritis. Bone, 139, Article ID: 115522. https://doi.org/10.1016/j.bone.2020.115522 |
[25] | Farr, J.N. and Khosla, S. (2019) Cellular Senescence in Bone. Bone, 121, 121-133. https://doi.org/10.1016/j.bone.2019.01.015 |
[26] | Chan, C.K.F., Gulati, G.S., Sinha, R., et al. (2018) Identification of the Human Skeletal Stem Cell. Cell, 175, 43-56. E21. https://doi.org/10.1016/j.cell.2018.07.029 |
[27] | Zhang, M., Mani, S.B., He, Y., et al. (2016) Induced Superficial Chondrocyte Death Reduces Catabolic Cartilage Damage in Murine Posttraumatic Osteoarthritis. The Journal of Clinical Investigation, 126, 2893-2902. https://doi.org/10.1172/JCI83676 |
[28] | Dai, H., Chen, R., Gui, C., et al. (2020) Eliminating Senescent Chondrogenic Progenitor Cells Enhances Chondrogenesis under Intermittent Hydrostatic Pressure for the Treatment of OA. Stem Cell Research & Therapy, 11, Article No. 199. https://doi.org/10.1186/s13287-020-01708-5 |
[29] | Zhou, Y., Al-Naggar, I.M.A., Chen, P.-J., Gasek, N.S., Wang, K., Mehta, S., et al. (2021) Senolytics Alleviate the Degenerative Disorders of Temporomandibular Joint in Old Age. Aging Cell, 20, E13394. https://doi.org/10.1111/acel.13394 |
[30] | Zheng, W., Feng, Z., You, S., Zhang, H., Tao, Z., Wang, Q., et al. (2017) Fisetin Inhibits IL-1β-Induced Inflammatory Response in Human Osteoarthritis Chondrocytes through Activating SIRT1 and Attenuates the Progression of Osteoarthritis in Mice. International Immunopharmacology, 45, 135-147. https://doi.org/10.1016/j.intimp.2017.02.009 |
[31] | Faust, H.J., Zhang, H., Han, J., Wolf, M.T., Jeon, O.H., Sadtler, K., et al. (2020) IL-17 and Immunologically Induced Senescence Regulate Response to Injury in Osteoarthritis. Journal of Clinical Investigation, 130, 5493-5507. https://doi.org/10.1172/JCI134091 |
[32] | Yang, H., Chen, C., Chen, H., et al. (2020) Navitoclax (ABT263) Reduces Inflammation and Promotes Chondrogenic Phenotype by Clearing Senescent Osteoarthritic Chondrocytes in Osteoarthritis. Aging (Albany NY), 12, Article No. 12750. https://doi.org/10.18632/aging.103177 |
[33] | Di Micco, R., Krizhanovsky, V., Baker, D. and D’Adda Di Fagagna, F. (2021) Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nature Reviews Molecular Cell Biology, 22, 75-95. https://doi.org/10.1038/s41580-020-00314-w |
[34] | Coryell, P.R., Diekman, B.O. and Loeser, R.F. (2021) Mechanisms and Therapeutic Implications of Cellular Senescence in Osteoarthritis. Nature Reviews Rheumatology, 17, 47-57. https://doi.org/10.1038/s41584-020-00533-7 |
[35] | Deshmukh, V., O’Green, A.L., Bossard, C., et al. (2019) Modulation of the Wnt Pathway through Inhibition of CLK2 and DYRK1A by Lorecivivint as a Novel, Potentially Disease-Modifying Approach for Knee Osteoarthritis Treatment. Osteoarthritis and Cartilage, 27, 1347-1360. https://doi.org/10.1016/j.joca.2019.05.006 |
[36] | Dhanabalan, K.M., Gupta, V.K. and Agarwal, R. (2020) Rapamycin-PLGA Microparticles Prevent Senescence, Sustain Cartilage Matrix Production under Stress and Exhibit Prolonged Retention in Mouse Joints. Biomaterials Science, 8, 4308-4321. https://doi.org/10.1039/D0BM00596G |
[37] | Fragoulis, G.E., McInnes, I.B. and Siebert, S. (2019) JAK-Inhibitors. New Players in the Field of Immune-Mediated Diseases, beyond Rheumatoid Arthritis. Rheumatology, 58, I43-I54. https://doi.org/10.1093/rheumatology/key276 |
[38] | Wan, M., Gray-Gaillard, E.F. and Elisseeff, J.H. (2021) Cellular Senescence in Musculoskeletal Homeostasis, Diseases, and Regeneration. Bone Research, 9, Article No. 41. https://doi.org/10.1038/s41413-021-00164-y |
[39] | Li, J., Zhang, B., Liu, W.X., et al. (2020) Metformin Limits Osteoarthritis Development and Progression through Activation of AMPK Signalling. Annals of the Rheumatic Diseases, 79, 635-645. https://doi.org/10.1136/annrheumdis-2019-216713 |
[40] | Ruan, G., Xu, J., Wang, K., et al. (2018) Associations between Knee Structural Measures, Circulating Inflammatory Factors and MMP13 in Patients with Knee Osteoarthritis. Osteoarthritis and Cartilage, 26, 1063-1069. https://doi.org/10.1016/j.joca.2018.05.003 |
[41] | Wang, Y., Fan, X., Xing, L., et al. (2019) Wnt Signaling: A Promising Target for Osteoarthritis Therapy. Cell Communication and Signaling, 17, Article No. 97. https://doi.org/10.1186/s12964-019-0411-x |
[42] | Van Den Bosch, M.H.J., Van Lent, P. and Van Der Kraan, P.M. (2020) Identifying Effector Molecules, Cells, and Cytokines of Innate Immunity in OA. Osteoarthritis and Cartilage, 28, 532-543. https://doi.org/10.1016/j.joca.2020.01.016 |
[43] | Nasi, S., Ea, H.K., So, A. and Busso, N. (2017) Revisiting the Role of Interleukin-1 Pathway in Osteoarthritis: Interleukin-1α and-1β, and NLRP3 Inflammasome Are Not Involved in the Pathological Features of the Murine Menisectomy Model of Osteoarthritis. Frontiers in Pharmacology, 8, Article No. 282. https://doi.org/10.3389/fphar.2017.00282 |
[44] | Dayer, J.M., Oliviero, F. and Punzi, L. (2017) A Brief History of IL-1 and IL-1 Ra in Rheumatology. Frontiers in Pharmacology, 8, Article No. 293. https://doi.org/10.3389/fphar.2017.00293 |
[45] | Latourte, A., Cherifi, C., Maillet, J., et al. (2017) Systemic Inhibition of IL-6/Stat3 Signalling Protects against Experimental Osteoarthritis. Annals of the Rheumatic Diseases, 76, 748-755. https://doi.org/10.1136/annrheumdis-2016-209757 |
[46] | Richette, P., Latourte, A., Sellam, J., et al. (2021) Efficacy of Tocilizumab in Patients with Hand Osteoarthritis: Double Blind, Randomised, Placebo-Controlled, Multicentre Trial. Annals of the Rheumatic Diseases, 80, 349-355. https://doi.org/10.1136/annrheumdis-2020-218547 |
[47] | Deng, L., Ren, R., Liu, Z., et al. (2019) Stabilizing Heterochromatin by DGCR8 Alleviates Senescence and Osteoarthritis. Nature Communications, 10, Article No. 3329. https://doi.org/10.1038/s41467-019-10831-8 |
[48] | Fu, L., Hu, Y., Song, M., et al. (2019) Up-Regulation of FOXD1 by YAP Alleviates Senescence and Osteoarthritis. PLOS Biology, 17, E3000201. https://doi.org/10.1371/journal.pbio.3000201 |
[49] | Ren, X., Hu, B., Song, M., et al. (2019) Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Reports, 26, 3643-3656.E7. https://doi.org/10.1016/j.celrep.2019.02.088 |
[50] | Martinez-Redondo, P., Guillen-Guillen, I., Davidsohn, N., Wang, C., Prieto, J., Kurita, M., Hatanaka, F., Zhong, C., Hernandez-Benitez, R., Hishida, T., Lezaki, T., Sakamoto, A., Nemeth, A.N., Hishida, Y., Esteban, C.R., Shojima, K., Huang, L., Shokhirev, M., Nu?ez-Delicado, E., Campistol, J.M., Guillen-Vicente, I., Rodriguez-I?igo, E., Lopez-Alco-rocho, J.M., Guillen-Vicente, M., Church, G., Reddy, P., Guillen-Garcia, P., Liu, G.H. and Belmonte, J.C.I. (2020) αKLOTHO and STGFβR2 Treatment Counteract the Osteoarthritic Phenotype Developed in a Rat Model. Protein Cell, 11, 219-226. https://doi.org/10.1007/s13238-019-00685-7 |
[51] | López-Otín, C., Blasco, M.A., Partridge, L., et al. (2023) Hallmarks of Aging: An Expanding Universe. Cell, 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001 |