|
自闭症筛查与诊断的客观评估工具——一项系统性综述
|
Abstract:
目前对自闭症的筛查与诊断往往基于需要主观评级的标准化访谈或量表,这样的评估方式往往依赖于经验丰富的专业人员,而且具有较强的主观性,耗时耗力,不便普及。较少研究对筛选ASD群体的客观评估工具进行综述。因此,本综述总结了近五年用于自闭症筛查与诊断的客观评估工具及相关可量化的指标,根据研究方法主要总结为以下四类:(1) 基于计算机化测验的行为学研究;(2) 基于眼动追踪技术的研究;(3) 基于脑成像技术的研究;(4) 基于机器学习分类算法的研究,以期为ASD群体的客观筛查方式提供一定的参考依据。
At present, the screening and diagnosis of autism is often based on standardized interviews or scales that require subjective ratings, which often rely on experienced professionals, and are highly subjective, time-consuming, and inconvenient to popularize. Few studies reviewed objective assessment tools for screening populations with ASD. Therefore, this review summarizes the objective assessment tools and related quantifiable indicators used for autism screening and diagnosis in the past five years, which are mainly summarized into the following four categories according to the research methods: (1) Behavioral research based on computerized tests; (2) Research based on eye tracking technology; (3) Research based on brain imaging technology; (4) Research based on machine learning classification algorithm, in order to provide a certain reference for the objective screening method of ASD population.
[1] | 陈光华, 陶冠澎, 翟璐煜, 白学军(2022). 自闭症谱系障碍的早期筛查工具. 心理科学进展, 30(4), 738-763. |
[2] | 李婷婷, 郭磊, 李帅, 高靖洁(2019). 孤独症谱系障碍测评工具的研究述评. 心理技术与应用, 7(2), 107-117. |
[3] | 谢点, 孔令志(2021). 基于脑磁图的自闭症谱系障碍早期筛查和诊断指标. 中国听力语言康复科学杂志, 19(3), 232-237. |
[4] | American Psychiatric Association, DSM-5 Task Force (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5? (5th ed.). American Psychiatric Publishing, Inc. https://doi.org/10.1176/appi.books.9780890425596 |
[5] | Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG Analytics for Early Detection of Autism Spectrum Disorder: A Data-Driven Approach. Scientific Reports, 8, Article No. 6828. https://doi.org/10.1038/s41598-018-24318-x |
[6] | Bovery, M., Dawson, G., Hashemi, J., & Sapiro, G. (2021). A Scalable Off-the-Shelf Framework for Measuring Patterns of Attention in Young Children and Its Application in Autism Spectrum Disorder. IEEE Transactions on Affective Computing, 12, 722-731. https://doi.org/10.1109/TAFFC.2018.2890610 |
[7] | Carlsson, E., Miniscalco, C., Gillberg, C., & ?sberg Johnels, J. (2018). Assessing False-Belief Understanding in Children with Autism Using a Computer Application: A Pilot Study. Journal of Psycholinguistic Research, 47, 1085-1099. https://doi.org/10.1007/s10936-018-9579-2 |
[8] | Carter Leno, V., Bedford, R., Chandler, S., White, P., Yorke, I., Charman, T., Pickles, A., & Simonoff, E. (2021). Callous-Unemotional Traits in Youth with Autism Spectrum Disorder (ASD): Replication of Prevalence Estimates and Associations with Gaze Patterns When Viewing Fearful Faces. Development and Psychopathology, 33, 1220-1228. https://doi.org/10.1017/S0954579420000449 |
[9] | Cremone-Caira, A., Trier, K., Sanchez, V., Kohn, B., Gilbert, R., & Faja, S. (2021). Inhibition in Developmental Disorders: A Comparison of Inhibition Profiles between Children with Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, and Comorbid Symptom Presentation. Autism, 25, 227-243. https://doi.org/10.1177/1362361320955107 |
[10] | Dawson, G., Campbell, K., Hashemi, J., Lippmann, S. J., Smith, V., Carpenter, K., Egger, H., Espinosa, S., Vermeer, S., Baker, J., & Sapiro, G. (2018). Atypical Postural Control Can Be Detected via Computer Vision Analysis in Toddlers with Autism Spectrum Disorder. Scientific Reports, 8, Article No. 17008. https://doi.org/10.1038/s41598-018-35215-8 |
[11] | DiCriscio, A. S., Smith, J., & Troiani, V. (2021). Comprehensive Assessment of Visual Perceptual Skills in Autism Spectrum Disorder. Frontiers in Psychology, 12, Article ID: 662808. https://doi.org/10.3389/fpsyg.2021.662808 |
[12] | Drimalla, H., Scheffer, T., Landwehr, N., Baskow, I., Roepke, S., Behnia, B., & Dziobek, I. (2020). Towards the Automatic Detection of Social Biomarkers in Autism Spectrum Disorder: Introducing the Simulated Interaction Task (SIT). NPJ Digital Medicine, 3, Article No. 25. https://doi.org/10.1038/s41746-020-0227-5 |
[13] | Garb, H. N., & Schramke, C. J. (1996). Judgement Research and Neuropsychological Assessment: A Narrative Review and Meta-Analyses. Psychological Bulletin, 120, 140-153. https://doi.org/10.1037/0033-2909.120.1.140 |
[14] | Goris, J., Brass, M., Cambier, C., Delplanque, J., Wiersema, J. R., & Braem, S. (2020). The Relation between Preference for Predictability and Autistic Traits. Autism Research, 13, 1144-1154. https://doi.org/10.1002/aur.2244 |
[15] | Grossi, E., Buscema, M., Della Torre, F., & Swatzyna, R. J. (2019). The “MS-ROM/IFAST” Model, a Novel Parallel Nonlinear EEG Analysis Technique, Distinguishes ASD Subjects From Children Affected with Other Neuropsychiatric Disorders with High Degree of Accuracy. Clinical EEG and Neuroscience, 50, 319-331. https://doi.org/10.1177/1550059419861007 |
[16] | Grossi, E., Olivieri, C., & Buscema, M. (2017). Diagnosis of Autism through EEG Processed by Advanced Computational Algorithms: A Pilot Study. Computer Methods and Programs in Biomedicine, 142, 73-79. https://doi.org/10.1016/j.cmpb.2017.02.002 |
[17] | Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus Mechanical Prediction: A Meta-Analysis. Psychological Assessment, 12, 19-30. https://doi.org/10.1037/1040-3590.12.1.19 |
[18] | He, Q., Wang, Q., Wu, Y., Yi, L., & Wei, K. (2021). Automatic Classification of Children with Autism Spectrum Disorder by Using a Computerized Visual‐Orienting Task. PsyCh Journal, 10, 550-565. https://doi.org/10.1002/pchj.447 |
[19] | Hoffmann, A., Thurman, A., Sterling, A., Kover, S., Finestack, L., Berry-Kravis, E., Edgin, J., Drayton, A., Fombonne, E., & Abbeduto, L. (2022). Analysis of a Repetitive Language Coding System: Comparisons between Fragile X Syndrome, Autism, and Down Syndrome. Brain Sciences, 12, Article No. 575. https://doi.org/10.3390/brainsci12050575 |
[20] | Javed, H., Lee, W., & Park, C. H. (2020). Toward an Automated Measure of Social Engagement for Children with Autism Spectrum Disorder—A Personalized Computational Modeling Approach. Frontiers in Robotics and AI, 7, Article No. 43. https://doi.org/10.3389/frobt.2020.00043 |
[21] | Johnston, K. (2019). Executive Function: Cognition and Behaviour in Adults with Autism Spectrum Disorders (ASD). Journal of Autism and Developmental Disorders, 49, 4181-4192. |
[22] | Jung, J., Zbozinek, T. D., Cummings, K. K., Wilhelm, F. H., Dapretto, M., Craske, M. G., Bookheimer, S. Y., & Green, S. A. (2021). Associations between Physiological and Neural Measures of Sensory Reactivity in Youth with Autism. Journal of Child Psychology and Psychiatry, 62, 1183-1194. https://doi.org/10.1111/jcpp.13387 |
[23] | Koehler, J. C., Georgescu, A. L., Weiske, J., Spangemacher, M., Burghof, L., Falkai, P., Koutsouleris, N., Tschacher, W., Vogeley, K., & Falter-Wagner, C. M. (2022). Brief Report: Specificity of Interpersonal Synchrony Deficits to Autism Spectrum Disorder and Its Potential for Digitally Assisted Diagnostics. Journal of Autism and Developmental Disorders, 52, 3718-3726. https://doi.org/10.1007/s10803-021-05194-3 |
[24] | Lalani, S. J., Duffield, T. C., Trontel, H. G., Bigler, E. D., Abildskov, T. J., Froehlich, A., Prigge, M. B. D., Travers, B. G., Anderson, J. S., Zielinski, B. A., Alexander, A., Lange, N., & Lainhart, J. E. (2018). Auditory Attention in Autism Spectrum Disorder: An Exploration of Volumetric Magnetic Resonance Imaging Findings. Journal of Clinical and Experimental Neuropsychology, 40, 502-517. https://doi.org/10.1080/13803395.2017.1373746 |
[25] | Luciana, M. (2003). Practitioner Review: Computerized Assessment of Neuropsychological Function in Children: Clinical and Research Applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB): Use of the CANTAB in Pediatric Neuropsychology. Journal of Child Psychology and Psychiatry, 44, 649-663. https://doi.org/10.1111/1469-7610.00152 |
[26] | Megerian, J. T., Dey, S., Melmed, R. D., Coury, D. L., Lerner, M., Nicholls, C. J., Sohl, K., Rouhbakhsh, R., Narasimhan, A., Romain, J., Golla, S., Shareef, S., Ostrovsky, A., Shannon, J., Kraft, C., Liu-Mayo, S., Abbas, H., Gal-Szabo, D. E., Wall, D. P., & Taraman, S. (2022). Evaluation of an Artificial Intelligence-Based Medical Device for Diagnosis of Autism Spectrum Disorder. NPJ Digital Medicine, 5, Article No. 57. https://doi.org/10.1038/s41746-022-00598-6 |
[27] | Mohai, K., Kálózi-Szabó, C., Jakab, Z., Fecht, S. D., Domonkos, M., & Botzheim, J. (2022). Development of an Adaptive Computer-Aided Soft Sensor Diagnosis System for Assessment of Executive Functions. Sensors, 22, Article No. 5880. https://doi.org/10.3390/s22155880 |
[28] | Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. International Journal of Surgery, 8, 336-341. https://doi.org/10.1016/j.ijsu.2010.02.007 |
[29] | Mouga, S., Duarte, I. C., Café, C., Sousa, D., Duque, F., Oliveira, G., & Castelo-Branco, M. (2021). Attentional Cueing and Executive Deficits Revealed by a Virtual Supermarket Task Coupled with Eye-Tracking in Autism Spectrum Disorder. Frontiers in Psychology, 12, Article ID: 671507. https://doi.org/10.3389/fpsyg.2021.671507 |
[30] | Nilsson Jobs, E., Falck-Ytter, T., & B?lte, S. (2018). Local and Global Visual Processing in 3-Year-Olds with and without Autism. Journal of Autism and Developmental Disorders, 48, 2249-2257. https://doi.org/10.1007/s10803-018-3470-8 |
[31] | ?ie, M. G., Andersen, P. N., Hovik, K. T., Skogli, E. W., & Rund, B. R. (2020). Similar Impairments Shown on a Neuropsychological Test Battery in Adolescents with High-Functioning Autism and Early Onset Schizophrenia: A Two-Year Follow-Up Study. Cognitive Neuropsychiatry, 25, 163-178. https://doi.org/10.1080/13546805.2020.1713736 |
[32] | Ono, Y., Kudoh, K., Ikeda, T., Takahashi, T., Yoshimura, Y., Minabe, Y., & Kikuchi, M. (2020). Auditory Steady-State Response at 20 Hz and 40 Hz in Young Typically Developing Children and Children with Autism Spectrum Disorder. Psychiatry and Clinical Neurosciences, 74, 354-361. https://doi.org/10.1111/pcn.12998 |
[33] | Perochon, S., Di Martino, M., Aiello, R., Baker, J., Carpenter, K., Chang, Z., Compton, S., Davis, N., Eichner, B., Espinosa, S., Flowers, J., Franz, L., Gagliano, M., Harris, A., Howard, J., Kollins, S. H., Perrin, E. M., Raj, P., Spanos, M., & Dawson, G. (2021). A Scalable Computational Approach to Assessing Response to Name in Toddlers with Autism. Journal of Child Psychology and Psychiatry, 62, 1120-1131. https://doi.org/10.1111/jcpp.13381 |
[34] | Ramseyer, F., & Tschacher, W. (2011). Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome. Journal of Consulting and Clinical Psychology, 79, 284-295. https://doi.org/10.1037/a0023419 |
[35] | Reisinger, D. L., Shaffer, R. C., Horn, P. S., Hong, M. P., Pedapati, E. V., Dominick, K. C., & Erickson, C. A. (2020). Atypical Social Attention and Emotional Face Processing in Autism Spectrum Disorder: Insights from Face Scanning and Pupillometry. Frontiers in Integrative Neuroscience, 13, Article No. 76. https://doi.org/10.3389/fnint.2019.00076 |
[36] | Roper, B. L., Ben-Porath, Y. S., & Butcher, J. N. (1995). Comparability and Validity of Computerized Adaptive Testing with the MMPI-2. Journal of Personality Assessment, 65, 358-371. https://doi.org/10.1207/s15327752jpa6502_10 |
[37] | Sobieski, M., Sobieska, A., Seku?owicz, M., & Bujnowska-Fedak, M. M. (2022). Tools for Early Screening of Autism Spectrum Disorders in Primary Health Care—A Scoping Review. BMC Primary Care, 23, Article No. 46. https://doi.org/10.1186/s12875-022-01645-7 |
[38] | Tan, E., Wu, X., Nishida, T., Huang, D., Chen, Z., & Yi, L. (2018). Analogical Reasoning in Children with Autism Spectrum Disorder: Evidence from an Eye-Tracking Approach. Frontiers in Psychology, 9, Article No. 847. https://doi.org/10.3389/fpsyg.2018.00847 |
[39] | Tsuchiya, K. J., Hakoshima, S., Hara, T., Ninomiya, M., Saito, M., Fujioka, T., Kosaka, H., Hirano, Y., Matsuo, M., Kikuchi, M., Maegaki, Y., Harada, T., Nishimura, T., & Katayama, T. (2021). Diagnosing Autism Spectrum Disorder without Expertise: A Pilot Study of 5-to 17-Year-Old Individuals Using Gazefinder. Frontiers in Neurology, 11, Article ID: 603085. https://doi.org/10.3389/fneur.2020.603085 |
[40] | Yamada, S., Nakagawa, I., Nishimura, F., Motoyama, Y., Park, Y.-S., & Nakase, H. (2020). The Possibility of Intracranial Hypertension in Patients with Autism Spectrum Disorder Using Computed Tomography. Journal of Clinical Medicine, 9, Article No. 3551. https://doi.org/10.3390/jcm9113551 |
[41] | Yasuhara, A. (2010). Correlation between EEG Abnormalities and Symptoms of Autism Spectrum Disorder (ASD). Brain and Development, 32, 791-798. https://doi.org/10.1016/j.braindev.2010.08.010 |