Metrological analysis shows that any clock in inertial motion in infinite space shall not have time dilation, due to relativity of such motion in such space. On the other hand, atomic clock in inertial motion in finite space shall exhibit time dilation, due to alteration of momentum of clock-defining particle caused by nonzero curvature of trajectory of such motion in such space. Therefore, time dilation experiment of atomic clock in inertial motion in physical space provides a direct and decisive way of determining geometry of physical space in real-time. Phenomenon of time dilation of atomic clock in inertial motion in physical space has long been observed and confirmed experimentally. Therefore, extent of physical space has to be finite, consistent with result of high precision experiment of free particle in high-speed motion conducted a decade ago.Keywords Geometry of Physical Space, Time Dilation, Atomic Clock, Special Relativity Theory
References
[1]
Newton, I. (1687) Philosophiae Nauralis Pincipia Mathematica. Joseph Streater, London. https://doi.org/10.5479/sil.52126.39088015628399
[2]
Galilei, G. (1638) Discorsi e Dimostrazioni Matematiche, intorno à due nuoue scienze. Elsevier, Lleida.
[3]
Maxwell, J.C. (1865) Philosophical Transactions of the Royal Society of London Series I, 155, 459-512. https://doi.org/10.1098/rstl.1865.0008
[4]
Larmor, J. (1897) Philosophical Transactions of the Royal Society of London Series A, 190, 205-300. https://doi.org/10.1098/rsta.1897.0020
[5]
Cohn, E. (1904) Sitzungsberichte der Königlich Preussischen Akademie der Wissenschften (Zweiter Halbband), 43, 1404-1416.
[6]
Michelson, A.A. and Morley, E.W. (1887) American Journal of Science, 34, 333-345. https://doi.org/10.2475/ajs.s3-34.203.333
Jammer, M. (2000) Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton. https://doi.org/10.1515/9781400823789
[21]
Einstein, A. (1905) Annalen der Physik, 323, 639-641. https://doi.org/10.1002/andp.19053231314
[22]
Frautschi, S.C., Olenick, R.P., Apostol, T.M. and Goodstein, D.L. (2008) The Mechanical Universe: Mechanics and Heat. Advanced Edition, Cambridge University Press, New York.
[23]
Botermann, B., Bing, D., Geppert, C, Gwinner, G., Hänsch, T.W., Huber, G., Karpuk, S., Krieger, A., Kühl, T., Nörtershäuser, W., Novotny, C., Reinhardt, S., Sánchez, R., Schwalm, D., Stöhlker, T., Wolf, A. and Saathoff, G. (2014) Physical Review Letters, 113, Article ID: 120405. https://doi.org/10.1103/PhysRevLett.113.120405
[24]
Kündig, W. (1963) Physical Review, 129, 2371-2375. https://doi.org/10.1103/PhysRev.129.2371
[25]
Mössbauer, R.L. (1958) Zeitschrift für Physik, 151, 124-143. https://doi.org/10.1007/BF01344210
[26]
Einstein, A. (1920) Relativity: The Special and General Theory. Methuen and Co Ltd., London.