全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于点云数据的干涉分析在仪器支架自动化装配中的应用
Application of Interference Analysis Based on Point Cloud Data in Automated Assembly of Instrument Supports

DOI: 10.12677/met.2024.132014, PP. 113-120

Keywords: 点云数据,干涉分析,自动化装配
Point Cloud Data
, Interference Analysis, Automatic Assembly

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对舱段内部仪器支架安装过程中,支架与筋条干涉影响自动化装配的问题,研究了一种基于点云数据的支架干涉分析与调整算法。通过分析支架角点与筋条的位置关系确定干涉现象,并根据分析结果对干涉支架的位置进行调整和补偿,指导后续自动化装配。以某舱段支架装配为例,利用该算法实现模型的自动装配。试验件装配结果表明,该算法有效、可靠,为舱段产品的自动化装配提供了重要手段。
In this paper, an interference analysis and adjustment algorithm of support based on point cloud data is studied to solve the problem that support and bar interference affect automatic assembly during the installation of instrument support in cabin. The interference phenomenon is determined by analyzing the position relationship between the corner point and the bar, and the position of the interference bracket is adjusted and compensated according to the analysis result, which guides the subsequent automatic assembly. Taking the assembly of a cabin support as an example, the algorithm is used to realize the automatic assembly of the model. Experimental assembly results show that the algorithm is effective and reliable, and provides an important means for automatic assembly of cabin products.

References

[1]  Xie, Q., Lu, D.N., Du, K.P., et al. (2020) Aircraft Skin Rivet Detection Based on 3D Point Cloud via Multiple Structures Fitting. Computer-Aided Design, 120, Article ID: 102805.
https://doi.org/10.1016/j.cad.2019.102805
[2]  Wang, Y., Zhao, H., Li, X., et al. (2020) High-Accuracy 3-D Sensor for Rivet Inspection Using Fringe Projection Profilometry with Texture Constraint. Sensors, 20, 7270.
https://doi.org/10.3390/s20247270
[3]  周海陶, 陈新度, 吴磊. 基于三维点云的铸件飞边打磨点提取及拟合方法[J]. 机电工程技术, 2022, 51(11): 43-46 145.
[4]  李荣华, 董欣基, 等. 改进PointNetLK的点云智能配准与位姿图优化方法[J]. 宇航学报, 2022, 43(11): 1557-1565.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133