全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2018~2021年中国食源性疾病地理分布及影响因素分析
Analysis on the Geographical Distribution and Influencing Factors of Foodborne Diseases in China, 2018~2021

DOI: 10.12677/sa.2024.132030, PP. 297-306

Keywords: 食源性疾病,空间自相关,时空扫描,回归分析,地理加权回归
Foodborne Diseases
, Spatial Autocorrelation, Space-Time Scanning, Regression Analysis, Geographic Weighted Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:分析2018~2021年中国内地食源性疾病的时空分布特征,为预防和控制提供相应的理论依据。方法:基于2018~2021年《中国卫生健康统计年鉴》,采用空间自相关分析、时空扫描等方法,研究中国内地居民食源性疾病的空间分布格局及其变化。结果:国内内地报告的食源性疾病在2.71~3.24/10万。全局空间自相关分析结果显示仅2020年食源性疾病发病率存在空间自相关。时空扫描结果显示在2018~2021期间有三个时空聚集区。公共卫生间建设数量、气温对食源性疾病呈正相关;居民个人食品支出、健康支出对食源性疾病呈现负相关。地理加权回归(Geographic Weighted Regression, GWR)模型能够更好地解释模型效果。结论:对食源性疾病采用空间聚集性分析能够较好地探测出食源性疾病的聚集点。对开展有关防控措施提供依据。
Objective: To analyze the spatial-temporal distribution characteristics of foodborne diseases in mainland of China from 2018 to 2021, and provide a theoretical basis for the prevention and control of foodborne diseases. Methods: Based on the China Health and Wellness Statistical Yearbook from 2018 to 2021, spatial autocorrelation analysis and space-time scanning were used to study the spatial distribution pattern of foodborne illnesses and their changes in mainland China residents. Results: The reported foodborne diseases in China ranged from 2.71 per 100,000 to 3.24 per 100,000. The results of global spatial autocorrelation analysis showed that only the incidence of foodborne diseases in 2020 had spatial autocorrelation. The space-time scanning results showed that there were three spatial-temporal clusters from 2018 to 2021. The temperature has an impact on the increase in foodborne diseases. The number of public toilets and temperature were positively correlated with foodborne diseases. Personal food expenditure and health expenditure were negatively correlated with foodborne diseases. The geographic weighted regression (GWR) model could better explain the model effect. Conclusion: Spatial clustering analysis could better detect the clustering points of foodborne diseases, which can provide evidence for prevention and control measures.

References

[1]  杨艳丽, 梁小勇, 韩宗辉. 2017~2021年西安市食源性疾病监测结果的流行特征分析[J]. 食品安全导刊, 2023(33): 46-48.
[2]  世界卫生组织. 世卫组织加强行动, 以改善食品安全, 保护人们免受疾病侵害[Z]. 2021.
[3]  Newell, D.G., Koopmans, M., Verhoef, L., et al. (2010) Food-Borne Diseases—The Challenges of 20 Years Ago Still Persist While New Ones Continue to Emerge. International Journal of Food Microbiology, 139, S3-S15.
https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
[4]  曾梦晴, 张壮, 陈有华. 中国食源性疾病省际时空差异与成因研究[J]. 美食研究, 2023, 40(4): 28-36.
[5]  陆姣, 王晓莉, 吴林海. 国内外食源性疾病防控的研究进展[J]. 中华疾病控制杂志, 2017, 21(2): 196-199.
[6]  张智芳, 廖冬冬. 1985~2022年国内食源性疾病研究热点和前沿趋势——基于CiteSpace可视化分析[J]. 公共卫生与预防医学, 2023, 34(4): 21-25.
[7]  陈婷, 周庆琼, 戚平, 等. 2011~2020年中国食源性疾病流行病学分析[J]. 中国食品卫生杂志, 2023, 35(10): 1545-1550.
[8]  Anselin, L., Syabri, I. and Kho, Y. (2006) GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis, 38, 5-22.
https://doi.org/10.1111/j.0016-7363.2005.00671.x
[9]  Anselin, L. and Rey, S.J. (2014) Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press, Chicago.
[10]  Anselin, L. (1995) Local Indicators of Spatial Association—LISA. Geographical Analysis, 27, 93-115.
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
[11]  Kulldorff, M. (2022) SaTScanTM User Guide.
https://www.satscan.org
[12]  Wangdi, K., Penjor, K., Tobgyal, et al. (2021) Space-Time Clustering Characteristics of Malaria in Bhutan at the End Stages of Elimination. International Journal of Environmental Research and Public Health, 18, Article 5553.
https://doi.org/10.3390/ijerph18115553
[13]  王增铮, 张福浩, 赵阳阳, 等. 区域地理加权回归分析方法[J]. 测绘通报, 2023(12): 81-87.
[14]  刁文丽, 王凯琳, 宋蕴奇, 等. 2014~2019年辽宁省食源性疾病流行病学分析[J]. 中国食品卫生杂志, 2021, 33(4): 451-455.
[15]  张丽萍, 董莉萍, 王玉娜. 2014~2015年吉林市食源性疾病流行特征和影响因素分析[J]. 铁路节能环保与安全卫生, 2017, 7(1): 43-46.
[16]  Kulldorff, M., Heffernan, R., Hartman, J., et al. (2005) A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. PLOS Medicine, 2, e59.
https://doi.org/10.1371/journal.pmed.0020059
[17]  岳玉娟, 刘小波, 任东升, 等. 中国大陆2005~2020年登革热流行病学特征分析[J]. 中国媒介生物学及控制杂志, 2023, 34(6): 761-766, 818.
[18]  陈艳伟, 李旭, 李夫, 等. 2013~2022年北京市人间布鲁氏菌病流行特征和空间分布分析[J]. 疾病监测, 2023, 38(10): 1168-1173.
[19]  陈丽敏. 基于监测医院报告病例的江西省食源性疾病时空特征及发病趋势预测研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
[20]  张雪佩, 滕艾颖, 王珊珊, 等. 气象因素对食源性疾病发病情况影响的研究[J]. 公共卫生与预防医学, 2024, 35(1): 45-48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133