全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模糊S-拟正规嵌入子群的同态性质研究
Research on the Homomorphism Properties of Fuzzy S-Quasinormally Embedded Subgroups

DOI: 10.12677/orf.2024.142112, PP. 63-70

Keywords: 模糊S-拟正规嵌入子群,既约集合套,同态
Fuzzy S-Quasinormally Embedded Subgroups
, Irreducible Nested Sets, Homomorphic

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在模糊S-拟正规子群的基础上提出了模糊S-拟正规嵌入子群的概念,利用既约集合套理论对模糊S-拟正规嵌入子群进行了研究。首先给出了群的模糊子群是模糊S-拟正规嵌入的当且仅当它的水平子集是通常群论意义上的S-拟正规嵌入,其次讨论了模糊S-拟正规嵌入子群的同态性质,最后将同态性质推广到了模糊S-拟正规子群。
In the paper, based on the fuzzy S-quasinormal subgroups, the concept of fuzzy S-quasinormally embedded subgroups is proposed and studied by using irreducible nested sets. Firstly, it is given that a fuzzy subgroup of a group is fuzzy S-quasinormally embedded if and only if its level subset is S-quasinormally embedded in the usual sense of group theory. Secondly, the homomorphic properties of fuzzy S-quasinormally embedded subgroups are discussed. Finally, the homomorphic properties are extended to fuzzy S-quasinormal subgroups.

References

[1]  Ore, O. (1939) Contributions to the Theory of Groups of Finite Order. Duke Mathematical Journal, 5, 431-460.
https://doi.org/10.1215/S0012-7094-39-00537-5
[2]  Kegel, O.H. (1962) Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78, 205-221.
https://doi.org/10.1007/BF01195169
[3]  Ballester-Bolinches, A. and Pedraza-Aquilera, M.C. (1998) Sufficient Conditions for Supersolvability of Finite Groups. Journal of Pure and Applied Algebra, 127, 113-118.
https://doi.org/10.1016/S0022-4049(96)00172-7
[4]  Asaad, M. and Heliel, A.A. (2001) On S-Quasinormally Embedded Subgroups of Finite Groups. Journal of Pure and Applied Algebra, 165, 129-135.
https://doi.org/10.1016/S0022-4049(00)00183-3
[5]  Li, S.R. and He, X.L. (2008) On Normally Embedded Subgroups of Prime Power Order in Finite Groups. Communications in Algebra, 36, 2333-2340.
https://doi.org/10.1080/00927870701509370
[6]  Yu, H.R., Xu, X.W. and Zhang, G.H. (2022) A Note on S-Semipermutable and S-Permutably Embedded Subgroups of Finite Groups. Ricerche di Matematica.
https://doi.org/10.1007/s11587-022-00717-1
[7]  Zheng, W.C., Cui, L., Meng, W., et al. (2023) On NH-Embedded and S-Quasinormally Embedded Subgroups of Finite Groups. Bollettino dellUnione Matematica Italiana, 17, 67-73.
https://doi.org/10.1007/s40574-023-00379-3
[8]  Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 68, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[9]  Rosenfeld, A. (1971) Fuzzy Groups. Journal of Mathematical Analysis and Applications, 35, 512-517.
https://doi.org/10.1016/0022-247X(71)90199-5
[10]  Ajmal, N. and Thomas, K.V. (1993) Quasinormality and Fuzzy Subgroups. Fuzzy Sets and Systems, 58, 217-225.
https://doi.org/10.1016/0165-0114(93)90497-6
[11]  李卫霞, 张诚一. 模糊S-拟正规子群[J]. 模糊系统与数学, 2011, 25(6): 69-74.
[12]  李卫霞, 邹春平, 张诚一. 模糊S-拟正规子群及其同态与同构[J]. 模糊系统与数学, 2012, 26(3): 58-62.
[13]  何利芳, 陈奕娟, 张诚一. 模糊弱S-置换子群[J]. 模糊系统与数学, 2015, 29(1): 59-64.
[14]  余敢华, 王朗, 张诚一. 模糊S-半置换子群的同态性质[J]. 模糊系统与数学, 2017, 31(2): 22-28.
[15]  王朗, 余敢华, 张诚一. 模糊弱S-半置换子群及其商群[J]. 模糊系统与数学, 2017, 31(3): 37-43.
[16]  Sivaramakrishna, D.P. (1981) Fuzzy Group and Levels Subgroups. Journal of Mathematical Analysis and Applications, 84, 264-269.
https://doi.org/10.1016/0022-247X(81)90164-5
[17]  张诚一. Fuzzy子环的商环与直积[J]. 模糊系统与数学, 1993, 7(1): 93-100.
[18]  张桂生. L-fuzzy群的同态和同构[J]. 模糊系统与数学, 1996, 10(2): 19-23.
[19]  罗承忠. 集合套与Fuzzy子群[J]. 北京师范大学学报: 自然科学版, 1986(4): 1-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133