|
模糊S-拟正规嵌入子群的同态性质研究
|
Abstract:
本文在模糊S-拟正规子群的基础上提出了模糊S-拟正规嵌入子群的概念,利用既约集合套理论对模糊S-拟正规嵌入子群进行了研究。首先给出了群的模糊子群是模糊S-拟正规嵌入的当且仅当它的水平子集是通常群论意义上的S-拟正规嵌入,其次讨论了模糊S-拟正规嵌入子群的同态性质,最后将同态性质推广到了模糊S-拟正规子群。
In the paper, based on the fuzzy S-quasinormal subgroups, the concept of fuzzy S-quasinormally embedded subgroups is proposed and studied by using irreducible nested sets. Firstly, it is given that a fuzzy subgroup of a group is fuzzy S-quasinormally embedded if and only if its level subset is S-quasinormally embedded in the usual sense of group theory. Secondly, the homomorphic properties of fuzzy S-quasinormally embedded subgroups are discussed. Finally, the homomorphic properties are extended to fuzzy S-quasinormal subgroups.
[1] | Ore, O. (1939) Contributions to the Theory of Groups of Finite Order. Duke Mathematical Journal, 5, 431-460. https://doi.org/10.1215/S0012-7094-39-00537-5 |
[2] | Kegel, O.H. (1962) Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Mathematische Zeitschrift, 78, 205-221. https://doi.org/10.1007/BF01195169 |
[3] | Ballester-Bolinches, A. and Pedraza-Aquilera, M.C. (1998) Sufficient Conditions for Supersolvability of Finite Groups. Journal of Pure and Applied Algebra, 127, 113-118. https://doi.org/10.1016/S0022-4049(96)00172-7 |
[4] | Asaad, M. and Heliel, A.A. (2001) On S-Quasinormally Embedded Subgroups of Finite Groups. Journal of Pure and Applied Algebra, 165, 129-135. https://doi.org/10.1016/S0022-4049(00)00183-3 |
[5] | Li, S.R. and He, X.L. (2008) On Normally Embedded Subgroups of Prime Power Order in Finite Groups. Communications in Algebra, 36, 2333-2340. https://doi.org/10.1080/00927870701509370 |
[6] | Yu, H.R., Xu, X.W. and Zhang, G.H. (2022) A Note on S-Semipermutable and S-Permutably Embedded Subgroups of Finite Groups. Ricerche di Matematica. https://doi.org/10.1007/s11587-022-00717-1 |
[7] | Zheng, W.C., Cui, L., Meng, W., et al. (2023) On NH-Embedded and S-Quasinormally Embedded Subgroups of Finite Groups. Bollettino dell’Unione Matematica Italiana, 17, 67-73. https://doi.org/10.1007/s40574-023-00379-3 |
[8] | Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 68, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[9] | Rosenfeld, A. (1971) Fuzzy Groups. Journal of Mathematical Analysis and Applications, 35, 512-517. https://doi.org/10.1016/0022-247X(71)90199-5 |
[10] | Ajmal, N. and Thomas, K.V. (1993) Quasinormality and Fuzzy Subgroups. Fuzzy Sets and Systems, 58, 217-225. https://doi.org/10.1016/0165-0114(93)90497-6 |
[11] | 李卫霞, 张诚一. 模糊S-拟正规子群[J]. 模糊系统与数学, 2011, 25(6): 69-74. |
[12] | 李卫霞, 邹春平, 张诚一. 模糊S-拟正规子群及其同态与同构[J]. 模糊系统与数学, 2012, 26(3): 58-62. |
[13] | 何利芳, 陈奕娟, 张诚一. 模糊弱S-置换子群[J]. 模糊系统与数学, 2015, 29(1): 59-64. |
[14] | 余敢华, 王朗, 张诚一. 模糊S-半置换子群的同态性质[J]. 模糊系统与数学, 2017, 31(2): 22-28. |
[15] | 王朗, 余敢华, 张诚一. 模糊弱S-半置换子群及其商群[J]. 模糊系统与数学, 2017, 31(3): 37-43. |
[16] | Sivaramakrishna, D.P. (1981) Fuzzy Group and Levels Subgroups. Journal of Mathematical Analysis and Applications, 84, 264-269. https://doi.org/10.1016/0022-247X(81)90164-5 |
[17] | 张诚一. Fuzzy子环的商环与直积[J]. 模糊系统与数学, 1993, 7(1): 93-100. |
[18] | 张桂生. L-fuzzy群的同态和同构[J]. 模糊系统与数学, 1996, 10(2): 19-23. |
[19] | 罗承忠. 集合套与Fuzzy子群[J]. 北京师范大学学报: 自然科学版, 1986(4): 1-5. |