An efficient and safe hydrogen storage method is one of the important links for the large-scale development of hydrogen in the future. Because of its low price and simple design, Ti-based hydrogen storage alloys are considered to be suitable for practical applications. In this paper, we review the latest research on Ti-based hydrogen storage alloys. Firstly, the machine learning and density functional theory are introduced to provide theoretical guidance for the optimization of Ti-based hydrogen storage alloys. Then, in order to improve the hydrogen storage performance, we briefly introduce the research of AB type and AB2 type Ti-based alloys, focusing on doping elements and adaptive after treatment. Finally, suggestions for the future research and development of Ti-based hydrogen storage alloys are proposed.
References
[1]
Lange, J.P. (2021) Towards Circular Carbo-Chemicals—The Metamorphosis of Petrochemicals. Energy Environ. Sci, 14, 4358-4376.
https://doi.org/10.1039/D1EE00532D
[2]
Smith, J.C. and Clark, C. (2019) The Future’s Energy Mix: The Journey to Integration [Guest Editorial]. IEEE Power and Energy Magazine, 17, 19-23.
https://doi.org/10.1109/MPE.2019.2933283
[3]
Dragoon, K., Iliceto, A., Korpas, M., Markussen, P., Pivovar, B., Ruth, M., Westlake, B. and Endler, E. (2022) Hydrogen as Part of a 100% Clean Energy System: Exploring Its Decarbonization Roles. IEEE Power and Energy Magazine, 20, 85-95.
https://doi.org/10.1109/MPE.2022.3167598
[4]
Andrews, C.J. and Weiner, S.A. (2004) Visions of a Hydrogen Future. IEEE Power and Energy Magazine, 2, 26-34. https://doi.org/10.1109/MPAE.2004.1269614
[5]
Mazloomi, K. and Gomes, C. (2012) Hydrogen as an Energy Carrier: Prospects and Challenges. Renewable and Sustainable Energy Reviews, 16, 3024-3033.
https://doi.org/10.1016/j.rser.2012.02.028
[6]
Kumar, A., Muthukumar, P., Sharma, P. and Kumar, E.A. (2022) Absorption Based Solid State Hydrogen Storage System: A Review. Sustain. Energy Technol. Assess, 52, 102204. https://doi.org/10.1016/j.seta.2022.102204
[7]
Ye, J., Jiang, L., Li, Z., Wang, S., Wang, Q., Luo, M., Wu, Y., Guo, X., Wu, J., Zhang, L., Chen, H. and Wu, R. (2024) Optimization Design of Solid-State Hydrogen Storage Device for Fuel Cell Forklift. J. Alloy. Compd, 970, 172242.
https://doi.org/10.1016/j.jallcom.2023.172242
[8]
Huang, L.J., Lin, H.J., Wang, H., Ouyang, L.Z. and Zhu, M. (2023) Amorphous Alloys for Hydrogen Storage. J. Alloy. Compd, 941, 168945.
https://doi.org/10.1016/j.jallcom.2023.168945
[9]
Hu, L., Nan, R., Li, J., Gao, L. and Wang, Y. (2017) Phase Transformation and Hydrogen Storage Properties of an La7.0Mg75.5Ni17.5 Hydrogen Storage Alloy Crystals. https://doi.org/10.3390/cryst7100316
[10]
Hu, H., Tang, R., Xiao, H., He, X., Zhou, W., Zhang, X., Ma, C. and Chen, Q. (2023) Development of V-Free BCC Structured Alloys for Hydrogen Storage. Acs Appl. Energ. Mater, 6, 11108-11117. https://doi.org/10.1021/acsaem.3c01934
[11]
Yu, H., Li, X. and Zheng, J. (2024) Beyond Hydrogen Storage: Metal Hydrides for Catalysis. Acs Catal., 3139-3157. https://doi.org/10.1021/acscatal.3c05696
[12]
Klopcic, N., Grimmer, I., Winkler, F., Sartory, M. and Trattner, A. (2023) A Review on Metal Hydride Materials for Hydrogen Storage. J. Energy Storage, 72, 108456.
https://doi.org/10.1016/j.est.2023.108456
[13]
German, E., Sandoval, J., Recio, A., Seif, A., Alonso, J.A. and López, M.J. (2023) Supported Metal Nanohydrides for Hydrogen Storage. Chem. Mat, 35, 1134-1147.
https://doi.org/10.1021/acs.chemmater.2c03106
Guo, J., Li, S., Su, Y. and Chen, G. (2020) Theoretical Study of Hydrogen Storage by Spillover on Porous Carbon Materials. Int. J. Hydrog. Energy, 45, 25900-25911.
https://doi.org/10.1016/j.ijhydene.2019.12.146
[16]
Saeed, M., Marwani, H.M., Shahzad, U., Asiri, A.M. and Rahman, M.M. (2024) Nanoscale Silicon Porous Materials for Efficient Hydrogen Storage Application. J. Energy Storage, 81, 110418. https://doi.org/10.1016/j.est.2024.110418
[17]
Marinelli, M. and Santarelli, M. (2020) Hydrogen Storage Alloys for Station-ary Applications. J. Energy Storage, 32, 101864.
https://doi.org/10.1016/j.est.2020.101864
[18]
Tu, B., Wang, H., Wang, Y., Li, R., Ouyang, L. and Tang, R. (2022) Optimizing Ti- Zr-Cr-Mn-Ni-V Alloys for Hybrid Hydrogen Storage Tank of Fuel Cell Bicycle. Int. J. Hydrog. Energy, 47, 14952-14960. https://doi.org/10.1016/j.ijhydene.2022.03.018
[19]
Marques, F., Balcerzak, M., Winkelmann, F., Zepon, G. and Felderhoff, M. (2021) Review and Outlook on High-Entropy Alloys for Hydrogen Storage. Energy Environ. Sci, 14, 5191-5227. https://doi.org/10.1039/D1EE01543E
[20]
Shang, H., Zhang, Y., Gao, J., Zhang, W., Wei, X., Yuan, Z. and Li, Y. (2022) Characteristics of Electrochemical Hydrogen Storage Using Ti-Fe Based Alloys Prepared by Ball Milling. Int. J. Hydrog. Energy, 47, 1036-1047.
https://doi.org/10.1016/j.ijhydene.2021.10.068
[21]
Liu, J., Sun, L., Yang, J., Guo, D., Chen, D., Yang, L. and Xiao, P. (2022) Ti-Mn Hydrogen Storage Alloys: From Properties to Applications. Rsc Adv, 12, 35744-35755.
https://doi.org/10.1039/D2RA07301C
[22]
Lv, P., Zhong, C., Huang, D., Zhou, X., Liu, Z. and Zhao, R. (2022) Superior Anti-Impurity Gas Poisoning Ability and Hydrogen Storage Properties of Ti-Cr Alloy by Introducing Zirconium as Additive. Int. J. Hydrog. Energy, 47, 18772-18785.
https://doi.org/10.1016/j.ijhydene.2022.04.041
[23]
Hu, J., Zhang, J., Xiao, H., Xie, L., Sun, G., Shen, H., Li, P., Zhang, J. and Zu, X. (2021) A First-Principles Study of Hydrogen Storage of High Entropy Alloy TiZrVMoNb. Int. J. Hydrog. Energy, 46, 21050-21058.
https://doi.org/10.1016/j.ijhydene.2021.03.200
[24]
Fadonougbo, J.O., Park, K.B., Na, T., Park, C., Park, H. and Ko, W. (2022) An Integrated Computational and Experimental Method for Predicting Hydrogen Plateau Pressures of TiFe1-xMx-Based Room Temperature Hydrides. Int. J. Hydrog. Energy, 47, 17673-17682. https://doi.org/10.1016/j.ijhydene.2022.03.240
[25]
Lu, Z., Wang, J., Wu, Y., Guo, X. and Xiao, W. (2022) Predicting Hydrogen Storage Capacity of V-Ti-Cr-Fe Alloy via Ensemble Machine Learning. Int. J. Hydrog. Energy, 47, 34583-34593. https://doi.org/10.1016/j.ijhydene.2022.08.050
[26]
Loh, S.M., Grant, D.M., Walker, G.S. and Ling, S. (2023) Substitutional Effect of Ti-Based AB2 Hydrogen Storage Alloys: A Density Functional Theory Study. Int. J. Hydrog. Energy, 48, 13227-13235. https://doi.org/10.1016/j.ijhydene.2022.12.083
[27]
Zhou, P., Xiao, X., Zhu, X., Chen, Y., Lu, W., Piao, M., Cao, Z., Lu, M., Fang, F., Li, Z., Jiang, L. and Chen, L. (2023) Machine Learning Enabled Customization of Performance-Oriented Hydrogen Storage Materials for Fuel Cell Systems. Energy Storage Mater, 63, 102964. https://doi.org/10.1016/j.ensm.2023.102964
[28]
Suwarno, S., Dicky, G., Suyuthi, A., Effendi, M., Witantyo, W., Noerochim, L. and Ismail, M. (2022) Machine Learning Analysis of Alloying Element Effects on Hydrogen Storage Properties of AB2 Metal Hydrides. Int. J. Hydrog. Energy, 47, 11938- 11947. https://doi.org/10.1016/j.ijhydene.2022.01.210
[29]
Liu, H., Zhang, J., Sun, P., Zhou, C., Liu, Y. and Fang, Z.Z. (2022) Effect of Oxygen on the Hydrogen Storage Properties of TiFe Alloys. J. Energy Storage, 55, 105543.
https://doi.org/10.1016/j.est.2022.105543
[30]
Liu, H., Zhang, J., Sun, P., Zhou, C., Liu, Y. and Fang, Z.Z. (2023) An Overview of TiFe Alloys for Hydrogen Storage: Structure, Processes, Properties, and Applications. J. Energy Storage, 68, 107772. https://doi.org/10.1016/j.est.2023.107772
[31]
Pati, S., Trimbake, S., Vashistha, M. and Sharma, P. (2021) Tailoring the Activation Behaviour and Oxide Resistant Properties of TiFe Alloys by Doping with Mn. Int. J. Hydrog. Energy, 46, 34830-34838. https://doi.org/10.1016/j.ijhydene.2021.08.041
[32]
Liu, H., Zhang, J., Zhou, C., Sun, P., Liu, Y. and Fang, Z.Z. (2023) Hydrogen Storage Properties of Ti-Fe-Zr-Mn-Nb Alloys. J. Alloy. Compd, 938, 168466.
https://doi.org/10.1016/j.jallcom.2022.168466
[33]
Li, C., Gao, X., Liu, B., Wei, X., Zhang, W., Lan, Y., Wang, H. and Yuan, Z. (2023) Effects of Zr Doping on Activation Capability and Hydrogen Storage Performances of TiFe-Based Alloy. Int. J. Hydrog. Energy, 48, 2256-2270.
https://doi.org/10.1016/j.ijhydene.2022.10.098
[34]
Ha, T., Kim, J., Sun, C., Lee, Y., Kim, D., Suh, J., Jang, J., Lee, J., Kim, Y. and Shim, J. (2023) Crucial Role of Ce Particles during Initial Hydrogen Absorption of AB- Type Hydrogen Storage Alloys. Nano Energy, 112, 108483.
https://doi.org/10.1016/j.nanoen.2023.108483
[35]
Zhu, Y., Li, X., Yang, X., Chen, P., Tsui, G.C., Xu, Z., Tang, R., Xiao, F. and Chan, K. (2023) Compositionally Complex Doping for low-V Ti-Cr-V Hydrogen Storage Alloys. Chem. Eng. J, 477, 146970. https://doi.org/10.1016/j.cej.2023.146970
[36]
Zhang, Y., Li, C., Zhang, W., Wei, X., Li, J., Qi, Y. and Zhao, D. (2023) Research and Application of Ti-Mn-Based Hydrogen Storage Alloys. J. Iron Steel Res. Int, 30, 611- 625. https://doi.org/10.1007/s42243-022-00905-1
[37]
Yao, Z., Liu, L., Xiao, X., Wang, C., Jiang, L. and Chen, L. (2018) Effect of Rare Earth Doping on the Hydrogen Storage Performance of Ti1.02Cr1.1Mn0.3Fe0.6 Alloy for Hybrid Hydrogen Storage Application. J. Alloy. Compd, 731, 524-530.
https://doi.org/10.1016/j.jallcom.2017.10.075
[38]
Xue, X., Ma, C., Liu, Y., Wang, H. and Chen, Q. (2023) Impacts of Ce Dopants on the Hydrogen Storage Performance of Ti-Cr-V Alloys. J. Alloy. Compd, 934, 167947.
https://doi.org/10.1016/j.jallcom.2022.167947
[39]
Kumar, A., Yadav, T.P. and Mukhopadhyay, N.K. (2022) Notable Hydrogen Storage in Ti-Zr-V-Cr-Ni High Entropy Alloy. Int. J. Hydrog. Energy, 47, 22893-22900.
https://doi.org/10.1016/j.ijhydene.2022.05.107
[40]
Rong, M., Wang, F., Wang, J., Wang, Z. and Zhou, H. (2017) Effect of Heat Treatment on Hydrogen Storage Properties and Thermal Stability of V68Ti20Cr12 Alloy. Progress in Natural Science: Materials International, 27, 543-549.
https://doi.org/10.1016/j.pnsc.2017.08.012
[41]
Nayebossadri, S. and Book, D. (2019) Development of a High-Pressure Ti-Mn Based Hydrogen Storage Alloy for Hydrogen Compression. Renew. Energy, 143, 1010- 1021. https://doi.org/10.1016/j.renene.2019.05.052
[42]
Zhou, P., Cao, Z., Xiao, X., Zhan, L., Li, S., Li, Z., Jiang, L. and Chen, L. (2021) Development of Ti-Zr-Mn-Cr-V Based Alloys for High-Density Hydrogen Storage. J. Alloy. Compd, 875, 160035. https://doi.org/10.1016/j.jallcom.2021.160035
[43]
Ma, P., Li, W. and Wu, E. (2021) Hydrogen Activation and Storage Properties of Laves Phase Ti1-xScxMn1.6V0.4 Alloys. Int. J. Hydrog. Energy, 46, 34389-34398.
https://doi.org/10.1016/j.ijhydene.2021.08.017
[44]
Zhu, J., Ma, L., Liang, F., Wang, L. (2015) Effect of Sc Substitution on Hydrogen Storage Properties of Ti-V-Cr-Mn Alloys. Int. J. Hydrog. Energy, 40, 6860-6865.
https://doi.org/10.1016/j.ijhydene.2015.03.149
[45]
Chen, X.Y., Chen, R.R., Ding, X., Fang, H.Z., Guo, J.J., Ding, H.S., Su, Y.Q. and Fu, H.Z. (2018) Crystal Structure and Hydrogen Storage Properties of Ti-V-Mn Alloys. Int. J. Hydrog. Energy, 43, 6210-6218.
https://doi.org/10.1016/j.ijhydene.2018.02.009
[46]
Qiao, W., Yin, D., Zhao, S., Ding, N., Liang, L., Wang, C., Wang, L., He, M. and Cheng, Y. (2023) Effects of Cu Doping on the Hydrogen Storage Performance of Ti-Mn-Based, AB2-Type Alloys. Chem. Eng. J, 465, 142837.
https://doi.org/10.1016/j.cej.2023.142837
[47]
Yan, Y., Li, Z., Wu, Y. and Zhou, S. (2022) Hydrogen Absorption-Desorption Characteristic of (Ti0.85Zr0.15)1.1Cr1-xMoxMn Based Alloys with C14 Laves Phase. Progress in Natural Science: Materials International, 32, 143-149.
https://doi.org/10.1016/j.pnsc.2022.03.001
[48]
Li, J., Hu, H., Xiao, H., Ma, C., Yi, L. and Chen, Q. (2023) Effect of SiO2-Doped on Microstructural Evolution and Hydrogen Storage Performances of AB2 Type Alloy. J. Alloy. Compd, 950, 169893. https://doi.org/10.1016/j.jallcom.2023.169893
[49]
Shang, H., Sheng, P., Li, J., Zhang, W., Zhang, X., Guo, S., Li, Y. and Zhang, Y. (2023) Characteristics of Hydrogen Storage of As-Milled TiFe-Based Alloys. Int. J. Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.06.325
[50]
Semboshi, S., Masahashi, N., Konno, T.J., Sakurai, M. and Hanada, S. (2004) Composition Dependence of Hydrogen Absorbing Properties in Melt Quenched and Annealed TiMn2 Based Alloys. J. Alloy. Compd, 379, 290-297.
https://doi.org/10.1016/j.jallcom.2004.02.045
[51]
Zhang, Q.A., Lei, Y.Q., Yang, X.G., Ren, K. and Wang, Q.D. (1999) Annealing Treatment of AB2-Type Hydrogen Storage Alloys: I. Crystal Structures. J. Alloy. Compd, 292, 236-240. https://doi.org/10.1016/S0925-8388(99)00485-5
[52]
Sandrock, G. (1999) A Panoramic Overview of Hydrogen Storage Alloys from a Gas Reaction Point of View. J. Alloy. Compd, 293-295, 877-888.
https://doi.org/10.1016/S0925-8388(99)00384-9
[53]
Dematteis, E.M., Cuevas, F. and Latroche, M. (2021) Hydrogen Storage Properties of Mn and Cu for Fe Substitution in TiFe0.9 Intermetallic Compound. J. Alloy. Compd, 851, 156075. https://doi.org/10.1016/j.jallcom.2020.156075