|
SGLT2抑制剂治疗射血分数保留型心力衰竭的作用机制及临床研究进展
|
Abstract:
近年来有研究观察到SGLT2抑制剂可以降低HFpEF的心血管死亡或心衰住院等心血管事件风险,而其在HFpEF中的具体作用机制目前尚不明确,SGLT2抑制剂在治疗HFpEF患者中,其提供心脏保护的作用机制涉及降低炎症和氧化应激反应、减少心外膜脂肪组织、纠正细胞质钠和钙稳态失调、抗间质纤维化、改善心肌能量代谢等多个方面,从而使HFpEF患者临床获益。本文旨在探讨SGLT2抑制剂在HFpEF中可能的作用机制及临床研究进展,为SGLT2抑制剂治疗HFpEF患者的作用机制研究提供一定的参考,并为SGLT2抑制剂临床应用作用机制研究的深入开展提供借鉴。
Recent investigations have demonstrated that SGLT2 inhibitors can reduce the risk of cardiovascular events, including cardiovascular death or hospitalization due to heart failure in patients with HFpEF. However, the specific mechanisms of action of SGLT2 inhibitors in HFpEF are currently unclear. The potential mechanisms included encompass inflammation and oxidative stress reduction, decrease in epicardial adipose tissue, correction of cytoplasmic sodium and calcium homeostasis, anti-interstitial fibrosis effects and enhancement of myocardial energy metabolism. These mechanisms collectively contribute to the observed clinical benefits in HFpEF patients. This paper aims to summarize the mechanisms of SGLT2 inhibitors in the treatment of patients with HFpEF and the progress of clinical research, providing a reference for the study of the mechanisms of action of SGLT2 inhibitors in treating patients with HFpEF, and offering insights for further research on the clinical application mechanisms of SGLT2 inhibitors.
[1] | Savarese, G., Becher, P.M., Lund, L.H., et al. (2023) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287. https://doi.org/10.1093/cvr/cvac013 |
[2] | Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) ACC/AHA/HFSA Guideline for the Management of Heart Failure. Journal of Cardiac Failure, 28, e1-e167. https://doi.org/10.1016/j.cardfail.2022.02.009 |
[3] | Gladden, J.D., Chaanine, A.H. and Redfield, M.M. (2018) Heart Failure with Preserved Ejection Fraction. Annual Review of Medicine, 69, 65-79. https://doi.org/10.1146/annurev-med-041316-090654 |
[4] | Omote, K., Verbrugge, F.H. and Borlaug, B.A. (2022) Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annual Review of Medicine, 73, 321-337. https://doi.org/10.1146/annurev-med-042220-022745 |
[5] | Tsao, C.W., Lyass, A., Enserro, D., et al. (2018) Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC: Heart Fail, 6, 678-685. https://doi.org/10.1016/j.jchf.2018.03.006 |
[6] | Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032. https://doi.org/10.1161/CIR.0000000000001073 |
[7] | Anker, S.D., Butler, J., Filippatos, G., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. The New England Journal of Medicine, 385, 1451-1461. https://doi.org/10.1056/NEJMoa2107038 |
[8] | Solomon, S.D., McMurray, J.J.V., Claggett, B., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. The New England Journal of Medicine, 387, 1089-1098. https://doi.org/10.1056/NEJMoa2206286 |
[9] | Bhatt, D.L., Szarek, M., Steg, P.G., et al. (2021) Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. The New England Journal of Medicine, 384, 117-128. https://doi.org/10.1056/NEJMoa2030183 |
[10] | Cowart, K. and Carris, N.W. (2021) Evaluation of Cardiovascular and Renal Outcomes with Ertugliflozin: What Is the VERdict from the VERTIS-CV Trial? Expert Opinion on Pharmacotherapy, 22, 163-165. https://doi.org/10.1080/14656566.2020.1822327 |
[11] | Zhazykbayeva, S., Pabel, S., Mügge, A., et al. (2020) The Molecular Mechanisms Associated with the Physiological Responses to Inflammation and Oxidative Stress in Cardiovascular Diseases. Biophysical Reviews, 12, 947-968. https://doi.org/10.1007/s12551-020-00742-0 |
[12] | Kolijn, D., Pabel, S., Tian, Y., et al. (2021) Empagliflozin Improves Endothelial and Cardiomyocyte Function in Human Heart Failure with Preserved Ejection Fraction via Reduced Pro-Inflammatory-Oxidative Pathways and Protein Kinase Galpha Oxidation. Cardiovascular Research, 117, 495-507. https://doi.org/10.1093/cvr/cvaa123 |
[13] | Cappetta, D., De Angelis, A., Ciuffreda, L.P., et al. (2020) Amelioration of Diastolic Dysfunction by Dapagliflozin in a Non-Diabetic Model Involves Coronary Endothelium. Pharmacological Research, 157. Article 104781. https://doi.org/10.1016/j.phrs.2020.104781 |
[14] | Scisciola, L., Cataldo, V., Taktaz, F., et al. (2022) Anti-Inflammatory Role of SGLT2 Inhibitors as Part of Their Anti-Atherosclerotic Activity: Data from Basic Science and Clinical Trials. Frontiers in Cardiovascular Medicine, 9, Article 1008922. https://doi.org/10.3389/fcvm.2022.1008922 |
[15] | Venteclef, N., Guglielmi, V., Balse, E., et al. (2015) Human Epicardial Adipose Tissue Induces Fibrosis of the Atrial Myocardium through the Secretion of Adipo-Fibrokines. European Heart Journal, 36, 795-805. https://doi.org/10.1093/eurheartj/eht099 |
[16] | Iacobellis, G. (2022) Epicardial Adipose Tissue in Contemporary Cardiology. Nature Reviews Cardiology, 19, 593-606. https://doi.org/10.1038/s41569-022-00679-9 |
[17] | Mullens, W., Martens, P. (2021) Empagliflozin-Induced Changes in Epicardial Fat: The Centerpiece for Myocardial Protection? JACC: Heart Fail, 9, 590-593. https://doi.org/10.1016/j.jchf.2021.05.006 |
[18] | Salvatore, T., Galiero, R., Caturano, A., et al. (2022) An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. International Journal of Molecular Sciences, 23, 3651-3695. https://doi.org/10.3390/ijms23073651 |
[19] | Yagi, S., Hirata, Y., Ise, T., et al. (2017) Canagliflozin Reduces Epicardial Fat in Patients with Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 9, Article 78. https://doi.org/10.1186/s13098-017-0275-4 |
[20] | Bouchi, R., Terashima, M., Sasahara, Y., et al. (2017) Luseogliflozin Reduces Epicardial Fat Accumulation in Patients with Type 2 Diabetes: A Pilot Study. Cardiovascular Diabetology, 16, Article No. 32. https://doi.org/10.1186/s12933-017-0516-8 |
[21] | Fukuda, T., Bouchi, R., Terashima, M., et al. (2017) Ipragliflozin Reduces Epicardial Fat Accumulation in Non-Obese Type 2 Diabetic Patients with Visceral Obesity: A Pilot Study. Diabetes Therapy, 8, 851-861. https://doi.org/10.1007/s13300-017-0279-y |
[22] | Masson, W., Lavalle-Cobo, A. and Nogueira, J.P. (2021) Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis. Cells, 10, Article 2150. https://doi.org/10.3390/cells10082150 |
[23] | De Lorenzi, A.B., Kaplinsky, E., Zambrano, M.R., et al. (2023) Emerging Concepts in Heart Failure Treatment and Management: Focus on SGLT2 Inhibitors in Heart Failure with Preserved Ejection Fraction. Drugs in Context, 12, 1-16. https://doi.org/10.7573/dic.2022-7-1 |
[24] | Zuurbier, C.J., Baartscheer, A., Schumacher, C.A., et al. (2021) Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Inhibits the Cardiac Na /H Exchanger 1: Persistent Inhibition under Various Experimental Conditions. Cardiovascular Research, 117, 2699-2701. https://doi.org/10.1093/cvr/cvab129 |
[25] | Trum, M., Riechel, J., Lebek, S., Pabel, S., et al. (2020) Empagliflozin Inhibits Na /H Exchanger Activity in Human Atrial Cardiomyocytes. ESC Heart Failure, 7, 4429-4437. https://doi.org/10.1002/ehf2.13024 |
[26] | Meagher, P., Adam, M. and Connelly, K. (2020) It’s Not All about the Cardiomyocyte: Fibroblasts, Empagliflozin, and Cardiac Remodelling. Canadian Journal of Cardiology, 36, 464-466. https://doi.org/10.1016/j.cjca.2019.10.017 |
[27] | Kang, S., Verma, S., Hassanabad, A.F., et al. (2020) Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 36, 543-553. https://doi.org/10.1016/j.cjca.2019.08.033 |
[28] | Fang, J.C. (2016) Heart Failure with Preserved Ejection Fraction: A Kidney Disorder? Circulation, 134, 435-437. https://doi.org/10.1161/CIRCULATIONAHA.116.022249 |
[29] | Gori, M., Senni, M., Gupta, D.K., et al. (2014) Association between Renal Function and Cardiovascular Structure and Function in Heart Failure with Preserved Ejection Fraction. European Heart Journal, 35, 3442-3451. https://doi.org/10.1093/eurheartj/ehu254 |
[30] | Wanner, C., Heerspink, H.J.L., Zinman, B., et al. (2018) Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial. Journal of the American Society of Nephrology, 29, 2755-2769. https://doi.org/10.1681/ASN.2018010103 |
[31] | Hallow, K.M., Helmlinger, G., Greasley, P.J., et al. (2018) Why Do SGLT2 Inhibitors Reduce Heart Failure Hospitalization? A Differential Volume Regulation Hypothesis. Diabetes, Obesity and Metabolism, 20, 479-487. https://doi.org/10.1111/dom.13126 |
[32] | Karagodin, I., Aba-Omer, O., Sparapani, R., et al. (2017) Aortic Stiffening Precedes Onset of Heart Failure with Preserved Ejection Fraction in Patients with Asymptomatic Diastolic Dysfunction. BMC Cardiovascular Disorders, 17, Article No. 62. https://doi.org/10.1186/s12872-017-0490-9 |
[33] | Saucedo-Orozco, H., Voorrips, S.N., Yurista, S.R., et al. (2022) SGLT2 Inhibitors and Ketone Metabolism in Heart Failure. Journal of Lipid and Atherosclerosis, 11, 1-19. https://doi.org/10.12997/jla.2022.11.1.1 |
[34] | Kappel, B.A., Lehrke, M., Schütt, K., et al. (2017) Effect of Empagliflozin on the Metabolic Signature of Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation, 136, 969-972. https://doi.org/10.1161/CIRCULATIONAHA.117.029166 |
[35] | Zelniker, T.A. and Braunwald, E. (2020) Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 422-434. https://doi.org/10.1016/j.jacc.2019.11.031 |
[36] | Packer, M. (2020) Autophagy Stimulation and Intracellular Sodium Reduction as Mediators of the Cardioprotective Effect of Sodium-Glucose Cotransporter 2 Inhibitors. European Journal of Heart Failure, 22, 618-628. https://doi.org/10.1002/ejhf.1732 |
[37] | Luo, G., Jian, Z., Zhu, Y., et al. (2019) Sirt1 Promotes Autophagy and Inhibits Apoptosis to Protect Cardiomyocytes from Hypoxic Stress. International Journal of Molecular Medicine, 43, 2033-2043. https://doi.org/10.3892/ijmm.2019.4125 |
[38] | Jaiswal, A., Jaiswal, V., Ang, S.P., et al. (2023) SGLT2 Inhibitors among Patients with Heart Failure with Preserved Ejection Fraction: A Meta-Analysis of Randomised Controlled Trials. Medicine (Baltimore), 102, e34693. https://doi.org/10.1097/MD.0000000000034693 |
[39] | 周京敏, 王华, 黎励文. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023 [J]. 中国循环杂志, 2023, 38(4): 375-393. |