全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Large Language Models on Conversational Marketing and Communication Strategies

DOI: 10.4236/vp.2024.102008, PP. 91-99

Keywords: Large Language Models (LLMs), Conversational Marketing, Natural Language Processing (NLP), Customer Engagement, Ethics in AI, Personalization Technologies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Large Language Models (LLMs) are revolutionizing the way conversational marketing and communication are integrated into digital engagement strategies. This paper explores the transformative power of LLMs in enhancing digital interactions, offering a critical analysis of their role. We delve into how LLMs are reshaping customer experiences by introducing personalization and improving communication efficiency through automation. Our examination reveals the diverse applications of LLMs within marketing strategies, highlighting their role in boosting consumer engagement and satisfaction. Nonetheless, this innovation is accompanied by challenges such as ethical concerns, privacy issues, and technological limitations amidst the prevailing enthusiasm. Amidst these obstacles, we envision a future enriched with varied interactions and boundless creativity. Looking ahead, we discuss the potential influence of LLMs on the evolution of conversational marketing, underscoring the need for algorithmic precision and seamless integration of interaction types. We anticipate a future dominated by LLMs, which promise to redefine consumer communications in the digital realm. However, we stress the necessity for careful management and ethical frameworks to guide the use of LLMs in our digital narrative. The advancement of LLMs signals a paradigm shift in marketing practices, offering new avenues for engagement and personalization, and heralding a new phase in consumer relationship management.

References

[1]  Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., & Wei, J. (2022). Scaling Instruction-Finetuned Language Models. arXiv:2210.11416
[2]  Corchado, J. M., López, S., Garcia, R., & Chamoso, P. (2023). Generative Artificial Intelligence: Fundamentals. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 12, e31704.
https://doi.org/10.14201/adcaij.31704
[3]  Dinh, C. M., & Park, S. (2023). How to Increase Consumer Intention to Use Chatbots? An Empirical Analysis of Hedonic and Utilitarian Motivations on Social Presence and the Moderating Effects of Fear across Generations. Electronic Commerce Research, 1-41.
https://doi.org/10.1007/s10660-022-09662-5
[4]  Gruetzemacher, R., & Paradice, D. (2022). Deep Transfer Learning & Beyond: Transformer Language Models in Information Systems Research. ACM Computing Surveys (CSUR), 54, 1-35.
https://doi.org/10.1145/3505245
[5]  Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M. B. et al. (2023). Large Language Models: A Comprehensive Survey of Its Applications, Challenges, Limitations, and Future Prospects. TechRxiv.
https://doi.org/10.36227/techrxiv.23589741.v3
[6]  Haleem, A., Javaid, M., & Singh, R. P. (2022). An Era of ChatGPT as a Significant Futuristic Support Tool: A Study on Features, Abilities, and Challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2, Article 100089.
https://doi.org/10.1016/j.tbench.2023.100089
[7]  Khan, R., Gupta, N., Sinhababu, A., & Chakravarty, R. (2023). Impact of Conversational and Generative AI Systems on Libraries: A Use Case Large Language Model (LLM). Science & Technology Libraries, 1-15.
https://doi.org/10.1080/0194262X.2023.2254814
[8]  Kushwaha, A. K., & Kar, A. K. (2020). Language Model-Driven Chatbot for Business to Address Marketing and Selection of Products. In S. K. Sharma et al. (Eds.), Re-Imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation: IFIP WG 8.6 International Conference on Transfer and Diffusion of IT, TDIT 2020 (pp. 16-28). Springer International Publishing.
https://doi.org/10.1007/978-3-030-64849-7_3
[9]  Mehta, R., Verghese, J., Mahajan, S., Barykin, S., Bozhuk, S., Kozlova, N., & Dedyukhina, N. (2022). Consumers’ Behavior in Conversational Commerce Marketing Based on Messenger Chatbots. F1000Research, 11, 647.
https://doi.org/10.12688/f1000research.122037.1
[10]  Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., & Irving, G. (2021). Scaling Language Models: Methods, Analysis & Insights from Training Gopher. arXiv:2112.11446
[11]  Sadikoğlu, E., Murat, G. Ö. K., Mijwil, M. M., & Kösesoy, İ. (2023). The Evolution and Impact of Large Language Model Chatbots in Social Media: A Comprehensive Review of Past, Present, and Future Applications. Veri Bilimi Dergisi, 6, 67-76.
[12]  Schroedl, S., Kumar, M., Hajebi, K., Ziyadi, M., Venkatapathy, S., Ramakrishna, A., & Natarajan, P. (2022). Improving Large-Scale Conversational Assistants Using Model Interpretation Based Training Sample Selection. In Y. Li, & A. Lazaridou (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track (pp. 371-378). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2022.emnlp-industry.37
[13]  Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. arXiv:1909.08053
[14]  Sood, S., & Pattinson, H. (2023). Marketing Education Renaissance through Big Data Curriculum: Developing Marketing Expertise Using AI Large Language Models. International Journal of Innovation and Economic Development, 8, 23-40.
https://doi.org/10.18775/ijied.1849-7551-7020.2015.86.2003
[15]  Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., & Stojnic, R. (2022). Galactica: A Large Language Model for Science. arXiv:2211.09085

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133