全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Rainfall Tendency for the Twentieth Century over Indira Sagar Region in Central India

DOI: 10.4236/ajcc.2024.131004, PP. 47-68

Keywords: Precipitation, Parametric, Non-Parametric Tests, Trend Analysis, Serial Correlations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study investigates long-term changes in annual and seasonal rainfall patterns in the Indira Sagar Region of Madhya Pradesh, India, from 1901 to 2010. Agriculture sustainability, food supply, natural resource development, and hydropower system reliability in the region rely heavily on monsoon rainfall. Monthly rainfall data from three stations (East Nimar, Barwani, and West Nimar) were analyzed. Initially, the pre-whitening method was applied to eliminate serial correlation effects from the rainfall data series. Subsequently, statistical trends in annual and seasonal rainfall were assessed using both parametric (student-t test) and non-parametric tests [Mann-Kendall, Sen’s slope estimator, and Cumulative Sum (CUSUM)]. The magnitude of the rainfall trend was determined using Theil-Sen’s slope estimator. Spatial analysis of the Mann-Kendall test on an annual basis revealed a statistically insignificant decreasing trend for Barwani and East Nimar and an increasing trend for West Nimar. On a seasonal basis, the monsoon season contributes a significant percentage (88.33%) to the total annual rainfall. The CUSUM test results indicated a shift change detection in annual rainfall data for Barwani in 1997, while shifts were observed in West and East Nimar stations in 1929. These findings offer valuable insights into regional rainfall behavior, aiding in the planning and management of water resources and ecological systems.

References

[1]  Ampitiyawatta, A. D., & Guo, S. (2009). Precipitation Trend in the Kalu Ganga Basin in Srilanka. Journal of Agricultural Science, 4, 10-18.
https://doi.org/10.4038/jas.v4i1.1641
[2]  Basistha A., Arya D. S., & Goel N. K. (2008). Spatial Pattern of Trends in Indian Sub-Divisional Rainfall. International Journal of Climatology, 29, 555-572.
https://doi.org/10.1002/joc.1706
[3]  Birsan, M., Molnar, P., Burlando, P., & Pfaundler, M. (2005). Streamflow Trends in Switzerland. Journal of Hydrology, 314, 312-329.
https://doi.org/10.1016/j.jhydrol.2005.06.008
[4]  Chiew, F. H. S., & McMahon, T. A. (1993). Detection of Trend or Change in Annual Flow of Australian Rivers. International Journal of Climatology, 13, 643-653.
https://doi.org/10.1002/joc.3370130605
[5]  CWC (Central Water Commission) (2005). Water Data Book. CWC.
https://admin.indiawaterportal.org/sites/default/files/iwp2/Water_Data_Complete_Book_CWC_2005.pdf
[6]  Daniel, W. W. (1978). Applied Nonparametric Statistics. Houghton Mifflin Comp.
[7]  Desai, K., Jain, V., Pandey, R., Srikant, P., & Trivedi, U. (2007). Rehabilitation of the Indira Sagar Pariyojana Displaced. Economic and Political Weekly, 42, 27-36.
[8]  Duhan, D., & Pandey, A. (2013). Statistical Analysis of Long Term Spatial and Temporal Trends of Rainfall during 1901-2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136-149.
https://doi.org/10.1016/j.atmosres.2012.10.010
[9]  Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing Trend of Extreme Rain Events over India in a Warming Environment. Science, 314, 1442-1445.
https://doi.org/10.1126/science.1132027
[10]  Haan, C. T. (1977). Statistical Methods in Hydrology. The Iowa State University Press.
[11]  Hamed, K. H. (2008). Trend Detection in Hydrologic Data: The Mann-Kendall Trend Test under the Scaling Hypothesis. Journal of Hydrology, 349, 350-363.
https://doi.org/10.1016/j.jhydrol.2007.11.009
[12]  Helsel, D. R., & Hirsch, R. M. (1992). Statistical Methods in Water Resources. Elsevier Science Publishing.
[13]  Helsel, D. R., & Hirsch, R. M. (2002). Statistical Methods in Water Resources. Techniques of Water Resources Investigations, Book 4, Chapter A3, U.S. Geological Survey.
[14]  IPCC (Intergovernmental Panel for Climate Change) (2007). Climate Change 2007—The Scientific Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change.
[15]  IPCC (Intergovernmental Panel for Climate Change) (2013). AR4 Working Group I Report, the Physical Science Basis. Cambridge University Press.
[16]  Jeffreys, H. (1939). Theory of Probability. Oxford University Press.
[17]  Kahya, E., & Kalayci, S. (2004). Trend Analysis of Streamflow in Turkey. Journal of Hydrology, 289, 128-144.
https://doi.org/10.1016/j.jhydrol.2003.11.006
[18]  Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend Analysis of Precipitation Data in Pieria Region (Greece). European Water, 30, 31-40.
[19]  Khare, D., Singh, R., & Shukla, R. (2014). Temporal Trend Analysis of Climatic Parameters in Barinallah Catchment over a Himalayan Region, India. Environment & We: An International Journal of Science & Technology, 9, 29-38.
[20]  Kiely, G. (1999). Climate Change in Ireland from Precipitation and Streamflow Observations. Advances in Water Resources, 23, 141-151.
https://doi.org/10.1016/S0309-1708(99)00018-4
[21]  Kothyari, U. C., & Singh, V. P. (1996). Rainfall and Temperature Trends in India. Hydrological Processes, 10, 357-372.
https://doi.org/10.1002/(SICI)1099-1085(199603)10:3<357::AID-HYP305>3.0.CO;2-Y
[22]  Kothyari, U. C., Singh, V. P., & Aravamuthan, V. (1997). An Investigation of Changes in Rainfall and Temperature Regimes of the Ganga Basin in India. Water Resources Management, 11, 17-34.
https://doi.org/10.1023/A:1017936123283
[23]  Kundzewicz, Z. W., & Robson, A. J. (2004). Change Detection in Hydrological Records—A Review of the Methodology. Hydrological Sciences Journal, 49, 7-19.
https://doi.org/10.1623/hysj.49.1.7.53993
[24]  Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-Term Trends in Extreme Precipitation Events over the Conterminous United States and Canada. Journal of Climate, 12, 2515-2527.
https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2
[25]  Leith, R. M., & Whitfield, P. H. (2000). Some Effects of Urbanization on Streamflow Records in a Small Watershed in the Lower Fraser Valley, B.C. Northeast Science, 74, 69-75.
[26]  Lettenmaier, D. P., Wood, E. F., & Wal1is, J. R. (1994). Hydro-Climatological Trends in the Continental United States, 1948-88. Journal of Climate, 7, 586-607.
https://doi.org/10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2
[27]  Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R. et al. (2018). IPCC, 2018: Global Warming of 1.5˚C. An IPCC Special Report on the Impacts of Global Warming of 1. 5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Sustainable Development, and Efforts to Eradicate Poverty, 616.
[28]  McGilchrist, C. A., & Woodyer, K. D. (1975). Note on a Distribution-Free CUSUM Technique. Techno Metrics, 17, 321-325.
https://doi.org/10.1080/00401706.1975.10489335
[29]  Meena, P. K., Khare, D., Shukla, R., & Mishra, P. K. (2015). Long Term Trend Analysis of Mega Cities in Northern India Using Rainfall Data. Indian Journal of Science and Technology, 8, 247-253.
https://doi.org/10.17485/ijst/2015/v8i3/59580
[30]  Mishra, N., Khare, D., Shukla, R., & Kumar, K. (2014). Trend Analysis of Air Temperature Time Series by Mann Kendall Test-A Case Study of Upper Ganga Canal Command (1901-2002). British Journal of Applied Science & Technology, 4, 4066-4082.
https://doi.org/10.9734/BJAST/2014/8650
[31]  Mishra, P. K., Khare, D., Mondal, A., Kundu, S., & Shukla, R. (2013). Statistical and Probability Analysis of Rainfall for Crop Planning in a Canal Command. Agriculture for Sustainable Development, 1, 95-102.
[32]  Mishra, P. K., Khare, D., Shukla, R., Mondal, A., & Kundu, S. (2016). Trends of Rainfall and Temperature in Tawa Canal Command, Madhya Pradesh, India. Journal of Agrometeorology, 18, 333-334.
https://doi.org/10.54386/jam.v18i2.964
[33]  Onoz, B., & Bayazit, M. (2003). The Power of Statistical Tests for Trend Detection, Turkish Journal of Environmental Engineering and Science, 27, 247-251.
[34]  Osborn, T. J., Hulme, M., Jones, P. D., & Basnett, T. A. (2000). Observed Trends in the Daily Intensity of United Kingdom Precipitation. International Journal of Climatology, 20, 347-364.
https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<347::AID-JOC475>3.0.CO;2-C
[35]  Partal, T., & Kahya, E. (2006). Trend Analysis in Turkish Precipitation Data. Hydrological Processes, 20, 2011-2026.
https://doi.org/10.1002/hyp.5993
[36]  Pingale S. M., Khare, D., Jat, M. K., & Adamowski, J. (2016). Trend Analysis of Climatic Variables in an Arid and Semi-Arid Region of the Ajmer District, Rajasthan, India. Journal of Water and Land Development, 28, 37-56.
https://doi.org/10.1515/jwld-2016-0001
[37]  Preethi, B., Mujumdar, M., Kripalani, R. H., Prabhu, A., & Krishnan, R. (2017). Recent Trends and Tele-Connections among South and East Asian Summer Monsoons in a Warming Environment. Climate Dynamics, 48, 2489-2505.
https://doi.org/10.1007/s00382-016-3218-0
[38]  Rai, R. K., Upadhyay, A., & Ojha, C. S. P. (2010). Temporal Variability of Climatic Parameters of Yamuna River Basin: Spatial Analysis of Persistence: Trend and Periodicity. The Open Hydrology Journal, 4, 184-210.
https://doi.org/10.2174/1874378101004010184
[39]  Rudra, R. P., Shukla, R., Dickinson, T., Goel, P. K., & Dhiman, J. (2023). Effect of Temperature on Frost-Free Days and Length of Crop Growing Season across Southern Ontario. American Journal of Climate Change, 12, 700-718.
https://doi.org/10.4236/ajcc.2023.124030
[40]  Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau, Journal of the American Statistical Association, 39, 1379-1389.
https://doi.org/10.1080/01621459.1968.10480934
[41]  Shukla, R., & Khare, D. (2013). Historical Trend Investigation of Temperature Variation in Indira Sagar Canal Command Area in Madhya Pradesh (1901-2005). International Journal of Advanced Information Science and Technology, 2, 58-67.
[42]  Shukla, R., & Khare, D. (2019). Land Use/Land Cover Change Detection of Indira Sagar Canal Command Area Using Integrated Remote Sensing and GIS Tools. Journal of Space Science and Technology, 2, 27-35.
[43]  Shukla, R., Deo, R., & Khare, D. (2015). Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (pp. 313-317). IEEE.
https://doi.org/10.1109/ICMLA.2015.75
[44]  Shukla, R., Khare, D., Kumar Dwivedi, A., Rudra, R. P., Palmate, S. S., Ojha, C. S. P., & Singh, V. P. (2023). Evaluation of Statistical Downscaling Model’s Performance in Projecting Future Climate Change Scenarios. Journal of Water and Climate Change, 14, 3559-3595.
https://doi.org/10.2166/wcc.2023.207
[45]  Shukla, R., Khare, D., Tiwari, P., Mishra, P. K., & Gupta, S. (2017). Analysis of Long Term Temperature Trend for Madhya Pradesh, India (1901-2005). Current World Environment, 12, 68-79.
https://doi.org/10.12944/CWE.12.1.09
[46]  Singh, N., & Sontakke, N. A. (2002). On Climatic Fluctuations and Environmental Changes of the Indo-Gangetic Plains, India. Climatic Change, 52, 287-313.
https://doi.org/10.1023/A:1013772505484
[47]  Singh, N., Sontakke, N. A., Singh, H. N., & Pandey, A. K. (2005). Recent Trend in Spatiotemporal Variation of Rainfall over India—An Investigation into Basin-Scale Rainfall Fluctuations. IAHS-AISH Publication, 296, 273-282.
[48]  Tabari, H., & Talaee, P. H. (2011). Temporal Variability of Rainfall over Iran: 1966-2005. Journal of Hydrology, 396, 313-320.
https://doi.org/10.1016/j.jhydrol.2010.11.034
[49]  Ventura, F., Rossi Pisa, P., & Ardizzoni, E. (2002). Temperature and Precipitation Trends in Bologna (Italy) from 1952 to 1999. Atmospheric Research, 61, 203-214.
https://doi.org/10.1016/S0169-8095(01)00135-1
[50]  Von Storch, H., & Navarra, A. (1995). Analysis of Climate Variability—Applications of Statistical Techniques. Springer-Verlag.
https://doi.org/10.1007/978-3-662-03167-4
[51]  WMO (1986). Guidelines on A the Selection of Reference Climatological Stations (RCSs) from the Existing Climatological Station Network. WMO/TD-No. 130, World 440, Meteorological Organization,.
[52]  Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic Trend and Step Changes in Japanese Precipitation. Journal of Hydrology, 279, 144-150.
https://doi.org/10.1016/S0022-1694(03)00178-1
[53]  Yevjevich, V. (1971). Stochastic Processes in Hydrology. Water Resources Publications.
[54]  Yue, S., & Hashino, M. (2003). Long Term Trends of Annual and Monthly Precipitation in Japan. Journal of the American Water Resources Association, 39, 587-596.
https://doi.org/10.1111/j.1752-1688.2003.tb03677.x
[55]  Yue, S., & Pilon, P. (2004). A Comparison of the Power of the T Test, Mann-Kendall and Bootstrap Tests for Trend Detection. Hydrological Sciences Journal, 49, 21-37.
https://doi.org/10.1623/hysj.49.1.21.53996
[56]  Zhang, X., Flarvey, K. D., Hogg, W. D., & Yrzyk, T. R. (2001). Trends in Canadian Streamflow. Water Resources Research, 37, 987-998.
https://doi.org/10.1029/2000WR900357

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133