全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

APAP诱导的肝损伤中的线粒体自噬
Mitochondrial Autophagy in APAP-Induced Liver Injury

DOI: 10.12677/acm.2024.143956, PP. 2151-2155

Keywords: 药物性肝损伤,APAP,线粒体自噬,机制
Drug-Induced Liver Injury
, APAP, Mitochondrial Autophagy, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

药物性肝损伤是我国非感染性肝病中的第二大类别,也是美国肝衰竭和肝移植的主要原因。从机理上讲,药物性肝损伤可分为直接型(即剂量依赖型、内在型和可预测型)、特异型(大多数与剂量无关、特异型和不可预测型)两种主要类型。在临床前研究中,大多数药物引发的非特异性肝毒性通常会被及时发现,因此不会进一步用于临床应用,然而,有一个例外情况,那就是对乙酰氨基酚(扑热息痛,APAP)在正常治疗剂量下,这种药物是安全可靠的,但一旦超过建议用量,可能会对肝脏造成严重的危害,甚至有可能引发急性肝衰竭。在正确使用下,它对患者的健康有积极的影响,但滥用或过量使用则可能带来可怕的后果,特别是对肝脏健康的影响。在发达国家如欧美,过量服用APAP是引发急性肝衰竭的主要因素。氧化应激是APAP诱导的肝脏致病性中一个关键的起始事件,线粒体自噬已被证明可促进生存并在抗氧化反应中发挥关键作用。因此,深入探讨APAP所引发的肝损害机制,以及线粒体自噬在对乙酰氨基酚诱导的肝损害中的保护机制,有助于有针对性地开发用于干预肝损伤进程的治疗目标和计划。
Drug-induced liver injury is the second largest category of non-infectious liver disease in China, and it is also the main cause of liver failure and liver transplantation in the United States. In terms of mechanism, drug-induced liver injury can be divided into two main types: direct type (dose-dependent, intrinsic and predictable) and specific type (mostly dose-independent, specific and unpredictable). In preclinical studies, non-specific hepatotoxicity caused by most drugs is usually detected in time, so it will not be further used in clinical applications. However, there is an exception that acetaminophen (APAP) is safe and reliable at normal therapeutic doses, but once it exceeds the recommended dose, it may cause serious harm to the liver and may even cause acute liver failure. When used correctly, it has a positive impact on the health of patients, but abuse or overuse may have dire consequences, especially on liver health. In developed countries such as Europe and the United States, excessive use of APAP is the main factor leading to acute liver failure. Oxidative stress is a key initial event in APAP-induced liver pathogenicity, and mitophagy has been shown to promote survival and play a key role in the antioxidant response. Therefore, in-depth study of the mechanism of liver damage caused by APAP and the protective mechanism of mitophagy in acetaminophen-induced liver damage will help to develop therapeutic targets and plans for intervening in the process of liver injury.

References

[1]  崔本文. 对乙酰氨基酚所致肝损伤炎症机制及竹节参皂苷V的干预作用研究[D]: [博士学位论文]. 延吉: 延边大学, 2020: 4-5.
[2]  McGill, M.R. and Jaeschke, H. (2013) Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical Research, 30, 2174-2187.
https://doi.org/10.1007/s11095-013-1007-6
[3]  Cohen, S.D., Pumford, N.R., Khairallah, E.A., et al. (1997) Selective Protein Covalent Binding and Target Organ Toxicity. Toxicology and Applied Pharmacology, 143, 1-12.
https://doi.org/10.1006/taap.1996.8074
[4]  Iverson, S.V., Eriksson, S., Xu, J., et al. (2013) A Txnrd1-Dependent Metabolic Switch Alters Hepatic Lipogenesis, Glycogen Storage, and Detoxification. Free Radical Biology and Medicine, 63, 369-380.
https://doi.org/10.1016/j.freeradbiomed.2013.05.028
[5]  Yuan, L. and Kaplowitz, N. (2013) Mechanisms of Drug-Induced Liver Injury. Clinics in Liver Disease, 17, 507-518.
https://doi.org/10.1016/j.cld.2013.07.002
[6]  Qiu, Y., Benet, L.Z. and Burlingame, A.L. (1998) Identification of the Hepatic Protein Targets of Reactive Metabolites of Acetaminophen in Vivo in Mice Using Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Journal of Biological Chemistry, 273, 17940-17953.
https://doi.org/10.1074/jbc.273.28.17940
[7]  Tirmenstein, M.A. and Nelson, S.D. (1990) Acetaminophen-Induced Oxidation of Protein Thiols. Contribution of Impaired Thiol-Metabolizing Enzymes and the Breakdown of Adenine Nucleotides. Journal of Biological Chemistry, 265, 3059-3065.
https://doi.org/10.1016/S0021-9258(19)39733-9
[8]  Du, K., Ramachandran, A., Weemhoff, J.L., et al. (2016) Editor’s Highlight: Metformin Protects against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicological Sciences, 154, 214-226.
https://doi.org/10.1093/toxsci/kfw158
[9]  Yan, M., Huo, Y., Yin, S., et al. (2018) Mechanisms of Acetaminophen-Induced Liver Injury and Its Implications for Therapeutic Interventions. Redox Biology, 17, 274-283.
https://doi.org/10.1016/j.redox.2018.04.019
[10]  Woolbright, B.L. and Jaeschke, H. (2017) Mechanisms of Acetaminophen-Induced Liver Injury. In: Ding, W.-X. and Yin, X.-M., Eds., Cellular Injury in Liver Diseases, Springer, Berlin, 55-76.
https://doi.org/10.1007/978-3-319-53774-0_3
[11]  Gujral, J.S., Knight, T.R., Farhood, A., et al. (2002) Mode of Cell Death after Acetaminophen Overdose in Mice: Apoptosis or Oncotic Necrosis? Toxicological Sciences, 67, 322-328.
https://doi.org/10.1093/toxsci/67.2.322
[12]  Jaeschke, H. and Ramachandran, A. (2024) Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. Annual Review of Pathology: Mechanisms of Disease, 19, 453-478.
https://doi.org/10.1146/annurev-pathmechdis-051122-094016
[13]  Yang, G., Zhang, L., Ma, L., et al. (2017) Glycyrrhetinic Acid Prevents Acetaminophen-Induced Acute Liver Injury via the Inhibition of CYP2E1 Expression and HMGB1-TLR4 Signal Activation in Mice. International Immunopharmacology, 50, 186-193.
https://doi.org/10.1016/j.intimp.2017.06.027
[14]  Jaeschke, H., McGill, M.R. and Ramachandran, A. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106.
https://doi.org/10.3109/03602532.2011.602688
[15]  McGill, M.R., Lebofsky, M., Norris, H.R.K., et al. (2013) Plasma and Liver Acetaminophen-Protein Adduct Levels in Mice after Acetaminophen Treatment: Dose-Response, Mechanisms, and Clinical Implications. Toxicology and Applied Pharmacology, 269, 240-249.
https://doi.org/10.1016/j.taap.2013.03.026
[16]  Heard, K.J., Green, J.L., James, L.P., et al. (2011) Acetaminophen-Cysteine Adducts during Therapeutic Dosing and Following Overdose. BMC Gastroenterology, 11, Article No. 20.
https://doi.org/10.1186/1471-230X-11-20
[17]  Shi, R., Guberman, M. and Kirshenbaum, L.A. (2018) Mitochondrial Quality Control: The Role of Mitophagy in Aging. Trends in Cardiovascular Medicine, 28, 246-260.
https://doi.org/10.1016/j.tcm.2017.11.008
[18]  Tujios, S. and Fontana, R.J. (2011) Mechanisms of Drug-Induced Liver Injury: From Bedside to Bench. Nature Reviews Gastroenterology & Hepatology, 8, 202-211.
https://doi.org/10.1038/nrgastro.2011.22
[19]  Hartmut, J.R.M.M. and Anup, R. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106.
https://doi.org/10.3109/03602532.2011.602688
[20]  Russell, R.C., Tian, Y., Yuan, H., et al. (2013) ULK1 Induces Autophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nature Cell Biology, 15, 741-750.
https://doi.org/10.1038/ncb2757
[21]  Kim, J., Kundu, M., Viollet, B., et al. (2011) AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141.
https://doi.org/10.1038/ncb2152
[22]  Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-461.
https://doi.org/10.1126/science.1196371
[23]  Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115, 577-590.
https://doi.org/10.1016/S0092-8674(03)00929-2
[24]  Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226.
https://doi.org/10.1016/j.molcel.2008.03.003
[25]  Wang, B., Nie, J., Wu, L., et al. (2018) AMPKα2 Protects against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circulation Research, 122, 712-729.
https://doi.org/10.1161/CIRCRESAHA.117.312317
[26]  Mizushima, N. (2010) The Role of the Atg1/ULK1 Complex in Autophagy Regulation. Current Opinion in Cell Biology, 22, 132-139.
https://doi.org/10.1016/j.ceb.2009.12.004
[27]  Ravikumar, B., Sarkar, S., Davies, J.E., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435.
https://doi.org/10.1152/physrev.00030.2009
[28]  Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in Mammalian Autophagy Research. Cell, 140, 313-326.
https://doi.org/10.1016/j.cell.2010.01.028
[29]  Shan, S., Shen, Z. and Song, F. (2018) Autophagy and Acetaminophen-Induced Hepatotoxicity. Archives of Toxicology, 92, 2153-2161.
https://doi.org/10.1007/s00204-018-2237-5
[30]  Zawel, L., Le Dai, J., Buckhaults, P., et al. (1998) Human Smad3 and Smad4 Are Sequence-Specific Transcription Activators. Molecular Cell, 1, 611-617.
https://doi.org/10.1016/S1097-2765(00)80061-1
[31]  Bayne, A.N. and Trempe, J.F. (2019) Mechanisms of PINK1, Ubiquitin and Parkin Interactions in Mitochondrial Quality Control and Beyond. Cellular and Molecular Life Sciences, 76, 4589-4611.
https://doi.org/10.1007/s00018-019-03203-4
[32]  Lee, S.B., Kim, J.J., Han, S.A., et al. (2019) The AMPK-Parkin Axis Negatively Regulates Necroptosis and Tumorigenesis by Inhibiting the Necrosome. Nature Cell Biology, 21, 940-951.
https://doi.org/10.1038/s41556-019-0356-8
[33]  Callegari, S., Oeljeklaus, S., Warscheid, B., et al. (2017) Phospho-Ubiquitin-PARK2 Complex as a Marker for Mitophagy Defects. Autophagy, 13, 201-211.
https://doi.org/10.1080/15548627.2016.1254852

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133