|
测量时间与样本量对参数估计的影响:基于密集追踪数据分析的方法比较
|
Abstract:
在心理学实验的进行过程中,被试的情绪、想法、行为和生理功能,往往不是保持不变,而是随时间变化一直波动的。传统的追踪或是横断研究能够对群体中存在的现象进行描述解释,但难以解释个体短时间内心理过程的动态变化。密集追踪是在短时间内对个体进行多次测量的方法,测得的数据更利于探究个体在实验过程中心理动态变化的过程作用机制。近年来,随着科学技术的发展,密集追踪测量的难度降低,目前已经成为心理学研究的一大热点。目前针对密集追踪研究的数据分析主要有传统的多层线性模型(Multilevel Modeling, MLM)的方法,以及新兴的动态结构方程模型(Dynamic Structural Equation Modeling, DSEM)的分析方法。二者均可以方便地对密集追踪数据中的自回归和交叉滞后效应进行建模。但目前尚未有研究探讨过时间点和样本量对于这两个模型参数估计的影响,因此本研究以模拟研究的形式,比较在不同时间点和样本量条件下两个模型参数估计的优劣,为研究者在实际研究中选择和使用模型提出建议。
In the process of conducting psychological experiments, the emotions, thoughts, behaviors, and physiological functions of the subjects often do not remain unchanged, but fluctuate continuously over time. Traditional tracking or cross-sectional research can describe and explain phenomena that exist within a group, but it is difficult to explain the dynamic changes in individual psychological processes over a short period of time. Intensive tracking is a method of measuring individuals multiple times in a short period of time, and the measured data is more conducive to exploring the process and mechanism of psychological dynamic changes in individuals during the experimental process. In recent years, with the development of science and technology, the difficulty of intensive tracking and measurement has decreased, and it has become a hot topic in psychological research. At present, the data analysis for intensive tracking research mainly includes traditional Multilevel Modeling (MLM) methods and emerging dynamic structural equation modeling (DSEM) analysis methods. Both can conveniently model autoregressive and cross lagged effects in intensive tracking data. However, there is currently no research exploring the impact of time points and sample size on the parameter estimation of these two models. Therefore, this study compares the advantages and disadvantages of parameter estimation of the two models under different time points and sample size conditions in the form of simulation research, and provides suggestions for researchers to choose and use models in practical research.
[1] | 安媛媛, 徐慰(2017). 雾霾和知觉压力加重疲劳感:来自生态瞬时评估的证据. 中国临床心理学杂志, 25(6), 1130-1133. https://doi.org/10.16128/j.cnki.1005-3611.2017.06.029 |
[2] | 刘源, 都弘彦, 方杰, 温忠麟(2022). 国内追踪数据分析方法研究与模型发展. 心理科学进展, 30(8), 1734-1746. https://doi.org/10.3724/sp.j.1042.2022.01734 |
[3] | 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪(2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812-1825. |
[4] | 张银普, 骆南峰, 石伟(2016). 经验取样法——一种收集“真实”数据的新方法. 心理科学进展, 24(2), 305-316. |
[5] | Armstrong, B., Covington, L. B., Unick, G. J., & Black, M. M. (2019). Featured Article: Bidirectional Effects of Sleep and Sedentary Behavior among Toddlers: A Dynamic Multilevel Modeling Approach. Journal of Pediatric Psychology, 44, 275-285. https://doi.org/10.1093/jpepsy/jsy089 |
[6] | Asparouhov, T., & Muthén, B. (2019). Latent Variable Centering of Predictors and Mediators in Multilevel and Time-Series Models. Structural Equation Modeling: A Multidisciplinary Journal, 26, 119-142. https://doi.org/10.1080/10705511.2018.1511375 |
[7] | Bolger, N., & Schilling, E. A. (1991). Personality and the Problems of Everyday Life: The Role of Neuroticism in Exposure and Reactivity to Daily Stressors. Journal of Personality, 59, 355-386. https://doi.org/10.1111/j.1467-6494.1991.tb00253.x |
[8] | Chen, Y., & Zhang, S. (2020). A Latent Gaussian Process Model for Analysing Intensive Longitudinal Data. British Journal of Mathematical and Statistical Psychology, 73, 237-260. https://doi.org/10.1111/bmsp.12180 |
[9] | Chun, C. A. (2016). The Expression of Posttraumatic Stress Symptoms in Daily Life: A Review of Experience Sampling Methodology and Daily Diary Studies. Journal of Psychopathology and Behavioral Assessment, 38, 406-420. https://doi.org/10.1007/s10862-016-9540-3 |
[10] | Curran, P. J., & Bauer, D. J. (2011). The Disaggregation of Within-Person and Between-Person Effects in Longitudinal Models of Change. Annual Review of Psychology, 62, 583-619. https://doi.org/10.1146/annurev.psych.093008.100356 |
[11] | Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study. Multivariate Behavioral Research, 53, 820-841. https://doi.org/10.1080/00273171.2018.1446819 |
[12] | Howland, M., & Rafaeli, E. (2010). Bringing Everyday Mind Reading into Everyday Life: Assessing Empathic Accuracy with Daily Diary Data. Journal of Personality, 78, 1437-1468. https://doi.org/10.1111/j.1467-6494.2010.00657.x |
[13] | Jahng, S. (2008). Multilevel Models for Intensive Longitudinal Data with Heterogeneous Error Structure: Covariance Transformation and Variance Function Models. University of Missouri-Columbia. |
[14] | Jahng, S., & Wood, P. K. (2017). Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: the Effect of Misspecification and Correction with Cholesky Transformation. Frontiers in Psychology, 8, Article 262. https://doi.org/10.3389/fpsyg.2017.00262 |
[15] | Joly-Burra, E., Van Der Linden, M., & Ghisletta, P. (2018). Intraindividual Variability in Inhibition and Prospective Memory in Healthy Older Adults: Insights from Response Regularity and Rapidity. Journal of Intelligence, 6, Article 13. https://doi.org/10.3390/jintelligence6010013 |
[16] | Lanza, S. T., Vasilenko, S. A., Liu, X., Li, R., & Piper, M. E. (2014). Advancing the Understanding of Craving during Smoking Cessation Attempts: A Demonstration of the Time-Varying Effect Model. Nicotine & Tobacco Research, 16, S127-S134. https://doi.org/10.1093/ntr/ntt128 |
[17] | Lazarevi?, L. B., Bjeki?, J., ?ivanovi?, M., & Kne?evi?, G. (2020). Ambulatory Assessment of Language Use: Evidence on the Temporal Stability of Electronically Activated Recorder and Stream of Consciousness Data. Behavior Research Methods, 52, 1817-1835. https://doi.org/10.3758/s13428-020-01361-z |
[18] | Malmberg, L. E., & Martin, A. J. (2019). Processes of Students’ Effort Exertion, Competence Beliefs and Motivation: Cyclic and Dynamic Effects of Learning Experiences within School Days and School Subjects. Contemporary Educational Psychology, 58, 299-309. https://doi.org/10.1016/j.cedpsych.2019.03.013 |
[19] | McAdams, D. P., & Constantian, C. A. (1983). Intimacy and Affiliation Motives in Daily Living: An Experience Sampling Analysis. Journal of Personality and Social Psychology, 45, 851-861. https://doi.org/10.1037/0022-3514.45.4.851 |
[20] | Mun, C. J., Suk, H. W., Davis, M. C., Karoly, P., Finan, P., Tennen, H., & Jensen, M. P. (2019). Investigating Intraindividual Pain Variability: Methods, Applications, Issues, and Directions. Pain, 160, 2415-2429. https://doi.org/10.1097/j.pain.0000000000001626 |
[21] | Munsch, S., Meyer, A. H., Milenkovic, N., Schlup, B., Margraf, J., & Wilhelm, F. H. (2009). Ecological Momentary Assessment to Evaluate Cognitive-Behavioral Treatment for Binge Eating Disorder. International Journal of Eating Disorders, 42, 648-657. https://doi.org/10.1002/eat.20657 |
[22] | Nickell, S. (1981). Biases in Dynamic Models with Fixed Effects. Econometrica: Journal of the Econometric Society, 49, 1417-1426. https://doi.org/10.2307/1911408 |
[23] | ?hrlund, I., Schultzberg, M., & Bartusch, C. (2019). Identifying and Estimating the Effects of a Mandatory Billing Demand Charge. Applied Energy, 237, 885-895. https://doi.org/10.1016/j.apenergy.2019.01.028 |
[24] | Piccirillo, M. L., & Rodebaugh, T. L. (2019). Foundations of Idiographic Methods in Psychology and Applications for Psychotherapy. Clinical Psychology Review, 71, 90-100. https://doi.org/10.1016/j.cpr.2019.01.002 |
[25] | Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods (Vol. 1). Sage. |
[26] | Schultzberg, M., & Muthén, B. (2018). Number of Subjects and Time Points Needed for Multilevel Time-Series Analysis: A Simulation Study of Dynamic Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25, 495-515. https://doi.org/10.1080/10705511.2017.1392862 |
[27] | Setodji, C. M., Martino, S. C., Dunbar, M. S., & Shadel, W. G. (2019). An Exponential Effect Persistence Model for Intensive Longitudinal Data. Psychological Methods, 24, 622-636. https://doi.org/10.1037/met0000211 |
[28] | Shiffman, S. (2009). Ecological Momentary Assessment (EMA) in Studies of Substance Use. Psychological Assessment, 21, 486-497. https://doi.org/10.1037/a0017074 |
[29] | Shiffman, S., & Waters, A. J. (2004). Negative Affect and Smoking Lapses: A Prospective Analysis. Journal of Consulting and Clinical Psychology, 72, 192-201. https://doi.org/10.1037/0022-006X.72.2.192 |
[30] | Sturgeon, J. A., Zautra, A. J., & Arewasikporn, A. (2014). A Multilevel Structural Equation Modeling Analysis of Vulnerabilities and Resilience Resources Influencing Affective Adaptation to Chronic Pain. Pain, 155, 292-298. https://doi.org/10.1016/j.pain.2013.10.007 |
[31] | Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory Assessment. Annual Review of Clinical Psychology, 9, 151-176. https://doi.org/10.1146/annurev-clinpsy-050212-185510 |
[32] | Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective Instability: Measuring a Core Feature of Borderline Personality Disorder with Ecological Momentary Assessment. Journal of Abnormal Psychology, 117, 647-661. https://doi.org/10.1037/a0012532 |
[33] | Vallacher, R. R., Read, S. J., & Nowak, A. (2002). The Dynamical Perspective in Personality and Social Psychology. Personality and Social Psychology Review, 6, 264-273. https://doi.org/10.1207/S15327957PSPR0604_01 |
[34] | Weinstock, J., Farney, M. R., Elrod, N. M., Henderson, C. E., & Weiss, E. P. (2017). Exercise as an Adjunctive Treatment for Substance Use Disorders: Rationale and Intervention Description. Journal of Substance Abuse Treatment, 72, 40-47. https://doi.org/10.1016/j.jsat.2016.09.002 |
[35] | Windt, J., Ardern, C. L., Gabbett, T. J., Khan, K. M., Cook, C. E., Sporer, B. C., & Zumbo, B. D. (2018). Getting the Most Out of Intensive Longitudinal Data: A Methodological Review of Workload-Injury Studies. BMJ Open, 8, e022626. https://doi.org/10.1136/bmjopen-2018-022626 |
[36] | Zhang, Z., & Nesselroade, J. R. (2007). Bayesian Estimation of Categorical Dynamic Factor Models. Multivariate Behavioral Research, 42, 729-756. https://doi.org/10.1080/00273170701715998 |
[37] | Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive Longitudinal Data Analyses with Dynamic Structural Equation Modeling. Organizational Research Methods, 24, 219-250. https://doi.org/10.1177/1094428119833164 |