全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

淮北煤田临涣矿区煤的孔隙结构分析
Pore Structure Analysis of Coals in Linhuan Mining Area of the Huaibei Coalfield

DOI: 10.12677/ojns.2024.122042, PP. 358-364

Keywords: 孔隙结构,孔容,比表面积,分形维数,淮北煤田
Pore Structure
, Pore Volume, Specific surface Area, Fractal Dimension, the Huaibei Coalfield

Full-Text   Cite this paper   Add to My Lib

Abstract:

为分析淮北煤田临涣矿区煤样的孔隙结构,以淮北煤田临涣矿区煤为研究对象,结合低温N2吸附实验和数理统计方法,分析了煤的孔隙结构及分形特征,讨论了孔隙结构参数与分形维数的关系。结果表明:煤的低温N2等温曲线与IUPAC分类的Ⅳ型接近,回滞环近似H3和H4型,主要为平板状和狭缝型孔隙。煤的孔容介于0.06~0.45 cm3/100g (平均值:0.15 cm3/100 g),比表面积介于0.19~2.25 m2/g (平均值:0.68 m2/g)。分形维数D1介于2.328~2.7122 (平均值:2.534),分形维数D2介于2.432~2.5933 (平均值:2.531),反映了孔隙结构的非均质性程度较高。由分形维数和孔容和比表面积的关系知:煤样分形维数D1与孔容与比表面积之间没有关系;分形维数D2与孔容和比表面积均存在弱正相关关系。
In order to analyze the pore structure of coal samples in Linhuan mining area of Huaibei coal field. taking the coals in Linhuan Mining Area of the Huaibei Coalfield as the research objects, combined with the low temperature N2 adsorption experiment and mathematical statistics, the pore structure and fractal characteristics of coals were analyzed, and the relationship between pore structure parameters and fractal dimension was discussed. Result shows that the isothermal curve is close to the type IV of IUPAC classification, and the adsorption hysteresis loop is similar to H3 and H4, which are flat and slit pores. The pore volume of coal in the Linhuan Mining Area is 0.06~0.45 cm3/100 g (Avg value: 0.15 cm3/100g), and the specific surface area is 0.19~2.25 m2/g (Avg value: 0.68 m2/g). The fractal dimension D1 is 2.328~2.7122 (Avg value: 2.534), and the fractal dimension D2 is 2.432~2.5933 (Avg value: 2.531), which reflects the high degree of heterogeneity of pore structure. There is no relationship between the fractal dimension D1 of coal samples and the pore volume and specific surface area. There is a weak positive correlation between fractal dimension D2 and pore volume and specific surface area.

References

[1]  赵迪斐, 郭英海, 毛潇潇, 等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报, 2017, 42(6): 1517-1526.
[2]  杨宇, 孙晗森, 彭小东, 等. 煤层气储层孔隙结构分形特征定量研究[J]. 特种油气藏, 2013, 20(1): 31-33.
[3]  赵爱红, 廖毅, 唐修义, 等. 煤的孔隙结构分形定量研究[J]. 煤炭学报, 1998, 23(4) : 439-442.
[4]  高为, 易同生, 金军, 等. 黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J]. 煤炭学报, 2017, 42(5): 1258-1265.
[5]  张岩, 刘金城, 徐浩, 等. 陆相与过渡相煤系页岩孔隙结构及分形特征对比——以鄂尔多斯盆地东北缘延安组与太原组为例[J]. 石油学报, 2017, 38(9): 1036-1046.
[6]  魏振岱. 安徽省煤炭资源赋存规律与找煤预测[M]. 北京: 地质出版社, 2013: 122-124.
[7]  舒建生, 贾建称, 王跃忠, 等. 地质构造复杂程度定量化评价: 以涡北煤矿为例[J]. 煤田地质与勘探, 2010, 38(6): 22-26.
[8]  Crutis, M.E., Sondergeld, C.H., Ambrose, R.J, et al. (2012) Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96, 665-677.
https://doi.org/10.1306/08151110188
[9]  赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 9(1): 1-12.
[10]  肖磊, 李卓, 杨有东, 等. 渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J]. 科学技术与工程, 2021, 21(2): 512-521.
[11]  李鹏, 闫长辉, 田园媛, 等. 基于等温吸附曲线形态研究泥页岩孔隙结构特[J]. 科技资讯, 2015, 13(18): 240-241.
[12]  Wei, Q., Li, X.Q., Zhang, J.Z., et al. (2019) Full Size Pore Structure Characterization of Deep-Buried Coals and Its Impact on Methane Adsorption Capacity: A Case Study of the Shihezi Formation Coals from the Panji Deep Area in Huainan Coalfield, Southern North China. Journal of Petroleum Science and Engineering, 173, 975-989.
https://doi.org/10.1016/j.petrol.2018.10.100

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133