全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无人机影像的公路智能巡查系统研究及应用
Research and Application of Intelligent Highway Inspection System Based on Unmanned Aerial Vehicle Imagery

DOI: 10.12677/OJTT.2024.132012, PP. 95-100

Keywords: 无人机,公路巡检,异常事件识别,协同巡查
Unmanned Aerial Vehicle
, Highway Inspection, Abnormal Event Recognition, Collaborative Patrol

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对公路日常巡查业务需求,结合无人机技术、5G传输技术、GIS技术和图像识别技术,提出了一种基于无人机的公路异常事件判别分析系统。该系统通过无线传输实现无人机画面的即时传输。无人机采集的视频和轨迹数据实现联动管理,并与GIS地图经纬度坐标进行关联。系统利用GIS地图结合智能识别实时展示公路异常事件,提供公路异常现场图片和视频,并支持标准接口,以便与已有业务系统进行对接。此外,系统利用无人机采集的视频制作三维影像,实现将10公里路段三维实景化管理,并实现对公路现场距离、高度、面积等进行定量化测量,从而大大提升公路管理的效率。通过标准化数据接口,系统能够与已有的协同巡查系统和路政执法部门共享异常事件现场图片或视频,并提供异常事件的精确桩号定位信息,进一步加强协同巡查的效率。
This article presents a UAV-based abnormal event analysis system for highway routine inspection business requirements, combining drone technology, 5G transmission technology, GIS technology, and image recognition technology. The system provides real-time transmission of drone footage via wireless connectivity. It realizes linked management of video and trajectory data collected by UAVs, which is associated with the latitude and longitude coordinates of the GIS map. The system employs GIS mapping combined with intelligent recognition to display abnormal highway events in real time, providing on-site pictures and videos of highway abnormalities, and supports standard interfaces for integration with existing business systems. Moreover, the system uses UAV-collected videos to create three-dimensional imagery, achieving 3D-realistic management of 10-kilometer road segments, and enables quantitative measurements of on-site distances, heights, and areas, thus greatly enhancing the efficiency of highway management. Through standardized data interfaces, the system can share on-site pictures or videos of abnormal events with existing collaborative patrol systems and road law enforcement departments, offering precise pile number location information for abnormal events, and further strengthening the efficiency of collaborative patrols.

References

[1]  王勇, 李学波. 基于深度学习的道路标志识别研究综述[J]. 自动化博览, 2017, 14(1): 23-27.
[2]  韩世华, 蒋一超, 杨永东. 基于无人机的公路施工监测技术[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 259-266.
[3]  赖英杰, 梅兴虎, 莫徐平, 等. 基于LiDAR和无人机技术的公路特征提取及应用[J]. 地球信息科学学报, 2020, 22(9): 1779-1789.
[4]  谭勇, 邓金平, 卜春川. 基于无人机多视角影像的三维建模方法[J]. 中国图像图形学报, 2020, 25(8): 1360-1369.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133