|
艾司氯胺酮对老年患者术后认知功能障碍影响的研究进展
|
Abstract:
随着医学不断的进步发展,老年患者手术数量及手术时程相应增加,患者及家属对术后生活质量的需求也不断提高,术后认知功能障碍(Post operative cognitive dysfunction, POCD)是术后最常见的并发症之一。艾司氯胺酮作为一种新型的N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid, NMDA)受体拮抗剂,有较好的镇痛和镇静效果,不仅能稳定维持术中患者的循环和呼吸,且有利于促进患者术后早期康复。近年来研究表明术中应用艾司氯胺酮能在一定程度上减轻老年患者神经损伤,改善术后认知功能。本文就艾司氯胺酮对老年患者POCD影响机制的研究进展进行阐述,以期为临床提供参考。
With the continuous progress and development of medicine, the number and duration of surgeries for elderly patients have correspondingly increased, and the demand for postoperative quality of life for patients and their families has also continued to rise. Post operative cognitive dysfunction (POCD) is one of the most common postoperative complications. Esketamine, as a new type of N-methyl-D-aspartate (NMDA) receptor antagonist, has strong analgesic and sedative effects, not only does it not have adverse reactions to the circulation and respiration of patients during surgery, but also is conducive to promoting early postoperative recovery. Recent studies have shown that intraoperative use of Esketamine can alleviate nerve damage in elderly patients to a certain extent and improve postoperative cognitive function. This article reviews the research progress on the mechanism of the effect of Esketamine on POCD in elderly patients, with a view to providing clinical reference.
[1] | Roldan, Y., Khattak, S., Samari, S., et al. (2023) Frequency of Postoperative Cognitive Dysfunction after Non-Cardiac Surgery and Its Impact on Functional Outcomes: Protocol for a Systematic Review. BMJ Open, 13, e071732. https://doi.org/10.1136/bmjopen-2023-071732 |
[2] | 梁淑清, 李雅兰. 脑氧供相关的术后认知功能障碍危险因素的研究进展[J]. 中华老年医学杂志, 2020, 39(2): 245-248. |
[3] | 杨露, 李艳华. 老年人术后谵妄和认知功能障碍的研究进展[J]. 中国老年学杂志, 2019, 39(6): 1508-1513. |
[4] | Skvarc, D.R., Berk, M., Byrne, L.K., et al. (2018) Post-Operative Cognitive Dysfunction: An Exploration of the Inflammatory Hypothesis and Novel Therapies. Neuroscience & Biobehavioral Reviews, 84, 116-133. https://doi.org/10.1016/j.neubiorev.2017.11.011 |
[5] | Xu, H.J., Li, X.P. and Han, L.Y. (2024) Role and Mechanism of Esketamine in Improving Postoperative Cognitive Dysfunction in Aged Mice through the TLR4/MyD88/P38 MAPK Pathway. The Kaohsiung Journal of Medical Sciences, 40, 63-73. https://doi.org/10.1002/kjm2.12778 |
[6] | Liu, X., Yu, Y. and Zhu, S. (2018) Inflammatory Markers in Postoperative Delirium (POD) and Cognitive Dysfunction (POCD): A Meta-Analysis of Observational Studies. PLOS ONE, 13, e0195659. https://doi.org/10.1371/journal.pone.0195659 |
[7] | 江楠, 丁智斌, 杨婷, 等. HMGB1在神经变性疾病炎性反应过程中的作用研究进展[J/OL]. 中国免疫学杂志: 1-14. http://kns.cnki.net/kcms/detail/22.1126.r.20230316.1721.008.html, 2024-02-17. |
[8] | Yu, H., Dong, R., Lu, Y., et al. (2017) Short-Term Postoperative Cognitive Dysfunction and Inflammatory Response in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: A Pilot Study. Mediators of Inflammation, 2017, Article ID: 3605350. https://doi.org/10.1155/2017/3605350 |
[9] | 戴瑜彤, 吴昊, 陈颖, 等. 术后认知功能障碍与中枢炎症之间的可能联系[J]. 国际麻醉学与复苏杂志, 2020, 41(2): 196-199. https://doi.org/10.3760/cma.j.issn.1673-4378.2020.02.015 |
[10] | Wang, P., Velagapudi, R., Kong, C.C., et al. (2020) Neurovascular and Immune Mechanisms That Regulate Postoperative Delirium Superimposed on Dementia. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 16, 734-749. https://doi.org/10.1002/alz.12064 |
[11] | Fausta, C., Giuseppina, B., Eva, E., et al. (2020) Neurodegenerative Diseases as Proteinopathies-Driven Immune Disorders. Neural Regeneration Research, 15, 850-856. https://doi.org/10.4103/1673-5374.268971 |
[12] | Li, Q. and Barres, B.A. (2018) Microglia and Macrophages in Brain Homeostasis and Disease. Nature Reviews Immunology, 18, 225-242. https://doi.org/10.1038/nri.2017.125 |
[13] | Dilger, R.N. and Johnson, R.W. (2008) Aging, Microglial Cell Priming, and the Discordant Central Inflammatory Response to Signals from the Peripheral Immune System. Journal of Leukocyte Biology, 84, 932-939. https://doi.org/10.1189/jlb.0208108 |
[14] | Wang, H.L., Ma, R.H., Fang, H., et al. (2015) Impaired Spatial Learning Memory after Isoflurane Anesthesia or Appendectomy in Aged Mice Is Associated with Microglia Activation. Journal of Cell Death, 8, 9-19. https://doi.org/10.4137/JCD.S30596 |
[15] | Roque, P.S., Hooshmandi, M., Neagu-Lund, L., et al. (2021) Intranasal Insulin Rescues Repeated Anesthesia-Induced Deficits in Synaptic Plasticity and Memory and Prevents Apoptosis in Neonatal Mice via MTORC1. Scientific Reports, 11, Article No. 15490. https://doi.org/10.1038/s41598-021-94849-3 |
[16] | Larsen, B.D., Rampalli, S., Burns, L.E., Brunette, S., Dilworth, F.J. and Megeney, L.A. (2010) Caspase 3 or Caspase-Activated DNase Promote Cell Differentiation by Inducing DNA Strand Breaks. Proceedings of the National Academy of Sciences of the United States of America, 107, 4230-4235. https://doi.org/10.1073/pnas.0913089107 |
[17] | Netto, M.B., de Oliveira Junior, A.N., Goldim, M., et al. (2018) Oxidative Stress and Mitochondrial Dysfunction Contributes to Postoperative Cognitive Dysfunction in Elderly Rats. Brain, Behavior, and Immunity, 73, 661-669. |
[18] | Westfall, S., Iqbal, U., Sebastian, M., et al. (2019) Gut Microbiota Mediated Allostasis Prevents Stress-Induced Neuroinflammatory Risk Factors of Alzheimer’s Disease. Progress in Molecular Biology and Translational Science, 168, 147-181. https://doi.org/10.1016/bs.pmbts.2019.06.013 |
[19] | Hirschhorn, T. and Stockwell, B.R. (2019) The Development of the Concept of Ferroptosis. Free Radical Biology and Medicine, 133, 130-143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043 |
[20] | Gan, B.Y. (2021) Mitochondrial Regulation of Ferroptosis. Journal of Cell Biology, 220, e202105043. https://doi.org/10.1083/jcb.202105043 |
[21] | Sousa, L., Oliveira, M.M., et al. (2020) Iron Overload: Effects on Cellular Biochemistry. Clinica Chimica Acta, 504, 180-189. https://doi.org/10.1016/j.cca.2019.11.029 |
[22] | Cheng, L., Zhu, X., Liu, Y., et al. (2021) ACSL4contributes to Sevoflurane-Induced Ferroptotic Neuronal Death in SH-SY5Y Cells via the 5’ AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. Annals of Translational Medicine, 9, Article 1454. https://doi.org/10.21037/atm-21-4249 |
[23] | Song, N., Wang, J., Jiang, H., et al. (2010) Ferroportin1 and Hephaestin Overexpression Attenuate Iron-Induced Oxidative Stress in MES23.5 Dopaminergic Cells. Journal of Cellular Biochemistry, 110, 1063-1072. https://doi.org/10.1002/jcb.22617 |
[24] | 张蝶. 地黄饮子对APP/PS1小鼠突触功能及胆碱能系统的保护机制[D]: [硕士学位论文]. 北京: 北京中医药大学, 2019. |
[25] | 倪优, 陈晟. 抗N-甲基-D-天冬氨酸受体脑炎发病机制及临床研究进展[J]. 上海交通大学学报(医学版), 2019, 39(9): 1096-1099. |
[26] | Li, Y.C., Zheng, X.X., Xia, S.Z., et al. (2020) Paeoniflorin Ameliorates Depressive-Like Behavior in Prenatally Stressed Offspring by Restoring the HPA Axis-and Glucocorticoid Receptor-Associated Dysfunction. Journal of Affective Disorders, 274, 471-481. https://doi.org/10.1016/j.jad.2020.05.078 |
[27] | 马慧敏, 柳璐, 熊英, 等. 姜黄素调节NMDAR/Ca~(2 )/CaMKⅡ信号通路对异氟醚诱导的幼龄小鼠术后认知功能障碍的影响[J]. 天津医药, 2023, 51(9): 948-954. |
[28] | Flint, R.B., Brouwer, C.N.M., Kr?nzlin, A.S.C., et al. (2017) Pharmacokinetics of S-Ketamine during Prolonged Sedation at the Pediatric Intensive Care Unit. Pediatric Anesthesia, 27, 1098-1107. https://doi.org/10.1111/pan.13239 |
[29] | 杨鸣. 艾司氯胺酮用于胸部肿瘤手术中的临床效果研究[J]. 中国实用医药, 2021, 16(15): 135-137. https://doi.org/10.14163/j.cnki.11-5547/r.2021.15.050 |
[30] | 康艺涵, 朱尤壮, 秦上媛, 等. 艾司氯胺酮的研究进展[J]. 中国医师进修杂志, 2021, 44(5): 470-476. https://doi.org/10.3760/cma.j.cn115455-20200706-00845 |
[31] | Hovaguimian, F., Tschopp, C., Beck-Schimmer, B. and Puhan, M. (2018) Intraoperative Ketamine Administration to Prevent Delirium or Postoperative Cognitive Dysfunction: A Systematic Review and Meta-Analysis. Acta Anaesthesiologica Scandinavica, 62, 1182-1193. https://doi.org/10.1111/aas.13168 |
[32] | 唐立飞, 王婕, 刘尧, 等. 艾司氯胺酮对虚弱患者全髋关节置换术后镇痛及炎症因子的影响[J]. 国际麻醉学与复苏杂志, 2022, 43(6): 590-595. https://doi.org/10.3760/cma.j.cn321761-20220209-00563 |
[33] | 王军, 韩蓓, 朱霁, 等. 艾司氯胺酮对老年胸腔镜手术患者术后早期认知功能及血清Aβ、炎症因子水平的影响[J]. 临床与病理杂志, 2023, 43(7): 1363-1370. |
[34] | Lu, X., Yang, R.R., Zhang, J.L., et al. (2018) Tauroursodeoxycholic Acid Produces Antidepressant-Like Effects in a Chronic Unpredictable Stress Model of Depression via Attenuation of Neuroinflammation, Oxido-Nitrosative Stress, and Endoplasmic Reticulum Stress. Fundamental & Clinical Pharmacology, 32, 363-377. https://doi.org/10.1111/fcp.12367 |
[35] | Okun, E., Barak, B., Saada-Madar, R., et al. (2012) Evidence for a Developmental Role for TLR4 in Learning and Memory. PLOS ONE, 7, e47522. https://doi.org/10.1371/journal.pone.0047522 |
[36] | 王秀红. 亚麻醉剂量艾司氯胺酮调控小胶质细胞TLR4/NF-κB通路对术后认知影响及机制研究[D]: [博士学位论文]. 南昌: 南昌大学医学部, 2021. |
[37] | 于丽丽, 赵娟, 尹春平, 等. 艾司氯胺酮对术后认知功能障碍老龄大鼠海马神经元程序性坏死的影响[J]. 中华麻醉学杂志, 2023, 43(8): 957-961. https://doi.org/10.3760/cma.j.cn131073.20230409.00812 |
[38] | 王洋, 张学雪, 张宇轩, 等. 艾司氯胺酮对丙泊酚麻醉致发育期大鼠远期认知功能障碍的影响及PI3K/Akt信号通路在其中的作用[J]. 中华麻醉学杂志, 2023, 43(4): 427-431. https://doi.org/10.3760/cma.j.cn131073.20221031.00408 |