|
Modern Physics 2024
量子非谐振子和双势阱模型中的六次与八次混合非谐项的基态能隙
|
Abstract:
量子非谐振子和双势阱是重要的数学物理模型,其中,计算源自于非简谐项的基态能隙是一个重要的问题。对于含有纯非谐项的情况,我们最近的研究发现可以用同一个公式来描述它们源自于纯非谐项的基态能隙,意味着这两个模型中的非谐效应存在着某种联系。上述发现是关于的纯非谐项的情况,在本文中我们将继续关注含有混合非谐项的情况,我们计算了六次与八次混合非谐项所产生的基态能隙,发现它们仍然由同样的公式来描述,从而进一步确认了这种未知联系的存在性。
The quantum anharmonic oscillator and the double-well potential models are important mathe-matical physics models in which the ground-state energy gap coming from the anharmonic terms is an important topic. For the case of pure anharmonic term, we find a qualitative formula that de-scribes the ground-state energy gap of both the anharmonic oscillator and the double-well poten-tial, which means that there is some connection between the anharmonic effects in the two models. The above discovery is about the case of pure anharmonic term, in this paper we will continue to focus on the case with mixed anharmonic term, we study this energy gap for the case of the sex-tic-octic mixed anharmonic term, and find that they are still described by the same qualitative formula, thus further confirming the existence of this unknown connection.
[1] | Müller-Kirsten, H.J.W. (2012) Introduction to Quantum Mechanics: Schr?dinger Equation and Path Integral. 5th Edition, World Scientific, Singapore. https://doi.org/10.1142/8428 |
[2] | Kleinert, H. (2004) Path Integrals in Quantum Me-chanics, Statistics, Polymer Physics, and Financial Markets. 3th Edition, World Scientific, Singapore. https://doi.org/10.1142/5057 |
[3] | Bender, C.M. and Wu, T.T. (1969) Anharmonic Oscillator. Physical Review, 184, 1231-1260.
https://doi.org/10.1103/PhysRev.184.1231 |
[4] | Gildener, E. and Patrascioiu, A. (1977) Pseudoparticle Contribu-tions to the Energy Spectrum of a One-Dimensional System. Physical Review D, 16, 423-430. https://doi.org/10.1103/PhysRevD.16.423 |
[5] | Bender, C.M. and Wu, T.T. (1971) Large-Order Behavior of Per-turbation Theory. Physical Review Letters, 27, 461-465. https://doi.org/10.1103/PhysRevLett.27.461 |
[6] | Polyakov, A.M. (1977) Quark Confinement and Topology of Gauge Groups. Nuclear Physics B, 120, 429-458.
https://doi.org/10.1016/0550-3213(77)90086-4 |
[7] | Belavin, A.A., Polyakov, A.M., Schwartz, A.S. and Tyupkin, Y.S. (1975) Pseudoparticle Solutions of the Yang-Mills Equations. Physics Letters B, 59, 85-87. https://doi.org/10.1016/0370-2693(75)90163-X |
[8] | Hooft, G. (1976) Symmetry Breaking through Bell-Jackiw Anomalies. Physical Review Letters, 37, 8-11.
https://doi.org/10.1103/PhysRevLett.37.8 |
[9] | Jackiw, R. and Rebbi, C. (1976) Vacuum Periodicity in a Yang-Mills Quantum Theory. Physical Review Letters, 37, 172-175. https://doi.org/10.1103/PhysRevLett.37.172 |
[10] | Callan Jr., C.G., Dashen, R.F. and Gross, D.J. (1976) The Struc-ture of the Gauge Theory Vacuum. Physics Letters B, 63, 334-340. https://doi.org/10.1016/0370-2693(76)90277-X |
[11] | Callan Jr., C.G. and Coleman, S.R. (1977) The Fate of the False Vacuum. II. First Quantum Corrections. Physical Review D, 16, 1762-1768. https://doi.org/10.1103/PhysRevD.16.1762 |
[12] | Fan, W. and Zhang, H. (2023) Non-Perturbative Instanton Effects in the Quartic and the Sextic Double-Well Potential by the Numerical Bootstrap Approach. |
[13] | Fan, W. and Zhang, H. (2023) A Non-Perturbative Formula Unifying Double-Wells and Anharmonic Oscillators under the Numerical Bootstrap Approach. |
[14] | Lin, H.W. (2020) Bootstraps to Strings: Solving Random Matrix Models with Positivity. Journal of High Energy Physics, 2020, 1-28. https://doi.org/10.1007/JHEP06(2020)090 |
[15] | Bissi, A., Sinha, A. and Zhou, X. (2022) Selected Topics in Analytic Conformal Bootstrap: A Guided Journey. Physics Reports, 991, 1-89. https://doi.org/10.1016/j.physrep.2022.09.004 |
[16] | Poland, D., Rychkov, S. and Vichi, A. (2019) The Conformal Bootstrap: Theory, Numerical Techniques, and Applications. Reviews of Modern Physics, 91, Article ID: 015002. https://doi.org/10.1103/RevModPhys.91.015002 |
[17] | Li, W. (2018) Inverse Bootstrapping Conformal Field Theo-ries. Journal of High Energy Physics, 2018, Article No. 77.
https://doi.org/10.1007/JHEP02(2018)007 |
[18] | El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Sim-mons-Duffin, D. and Vichi, A. (2012) Solving the 3D Ising Model with the Conformal Bootstrap. Physical Review D, 86, Article ID: 025022.
https://doi.org/10.1103/PhysRevD.86.025022 |
[19] | Han, X., Hartnoll, S.A. and Kruthoff, J. (2020) Bootstrapping Matrix Quantum Mechanics. Physical Review Letters, 125, Article ID: 041601. https://doi.org/10.1103/PhysRevLett.125.041601 |
[20] | Aikawa, Y., Morita, T. and Yoshimura, K. (2022) Bootstrap Method in Harmonic Oscillator. Physics Letters B, 833, Article ID: 137305. https://doi.org/10.1016/j.physletb.2022.137305 |
[21] | Berenstein, D. and Hulsey, G. (2022) Bootstrapping More QM Systems. Journal of Physics A: Mathematical and Theoretical, 55, Article ID: 275304. https://doi.org/10.1088/1751-8121/ac7118 |
[22] | Bhattacharya, J., Das, D., Das, S.K., Jha, A.K. and Kundu, M. (2021) Numerical Bootstrap in Quantum Mechanics. Physics Letters B, 823, Article ID: 136785. https://doi.org/10.1016/j.physletb.2021.136785 |
[23] | Du, B., Huang M. and Zeng, P. (2022) Bootstrapping Cala-bi-Yau Quantum Mechanics. Communications in Theoretical Physics, 74, Article ID: 095801. https://doi.org/10.1088/1572-9494/ac679a |
[24] | Aikawa, Y., Morita, T. and Yoshimura, K. (2022) Application of Bootstrap to a θ Term. Physical Review D, 105, Article ID: 085017. https://doi.org/10.1103/PhysRevD.105.085017 |
[25] | Li, W. (2022) Null Bootstrap for Non-Hermitian Hamiltonians. Physical Review D, 106, Article ID: 125021.
https://doi.org/10.1103/PhysRevD.106.125021 |
[26] | Sachdev, S. (1999) Quantum Phase Transitions. Physics World, 12, Article No. 33.
https://doi.org/10.1088/2058-7058/12/4/23 |
[27] | Buckingham, M. and Fairbank, W. (1961) Chapter III. The Nature of the λ-Transition in Liquid Helium. In: Progress in Low Temperature Physics, Vol. 3, Elsevier, Amsterdam, 80-112. https://doi.org/10.1016/S0079-6417(08)60134-1 |
[28] | Lipatov, L.N. (1977) Divergence of Perturbation Series and Pseudoparticles. JETP Letters, 25, 104-107. |
[29] | Brezin, E., Le Guillou, J.C. and Zinn-Justin, J. (1977) Perturbation Theory at Large Order. I. The φ2N Interaction. Physical Review D, 15, 1544-1557. https://doi.org/10.1103/PhysRevD.15.1544 |
[30] | Brezin, E., Le Guillou, J.C. and Zinn-Justin, J. (1977) Perturbation Theory at Large Order. II. Role of the Vacuum Instability. Physical Review D, Particles Fields, 15, 1558-1564. https://doi.org/10.1103/PhysRevD.15.1558 |
[31] | Zinn-Justin, J. (1979) X. Large Order Estimates in Perturbation Theory. Physics Reports, 49, 205-213.
https://doi.org/10.1016/0370-1573(79)90110-8 |