|
宿迁市极端气候事件变化特征及其未来趋势预测
|
Abstract:
文章基于宿迁市4个气象站点1961~2021年逐日降水量、平均气温、最高和最低气温数据,运用线性趋势法、Mann-Kendall检验法、RClimDex模型、小波分析和R/S分析法,分析了18个极端气温和降水指数的变化特征,并进行了趋势预测。结果表明:1) 极端高温和极端低温均呈增加趋势,气温日较差呈减小趋势;极端高温(低温)事件的频率和持续性呈上升(下降)趋势;2) 极端降水事件的强度和频率呈微弱的上升趋势,持续性呈微弱的下降趋势;3) 极端气温冷指数的升温趋势明显高于暖指数,而夜指数的升温幅度也超过昼指数;4) 从周期性来看,极端气温指数存在2~6 a的周期变化;极端降水指数存在2 a左右的周期变化;5) R/S分析表明,未来宿迁地区气候变暖的状态仍继续保持;极端降水指数增减趋势不一致;极端气温指数的平均循环长度多大于15 a,极端降水指数的循环长度多小于10 a。
In this paper, based on daily precipitation, average temperature, and maximum and minimum temperature data of 4 meteorological stations in Suqian City from 1961 to 2021, linear trend method, Mann-Kendall test, RClimDex model, wavelet analysis, and R/S are used to analyze the variation characteristics and trend prediction of 18 extreme temperature and precipitation indexes. The results are as follows: 1) Both extreme high temperature and extreme low temperature showed an increasing trend, while the daily temperature range showed a decreasing trend; the frequency and sustainability of extreme high-temperature (low-temperature) events showed an increasing (decreasing) trend; 2) The intensity and frequency of extreme precipitation events are marginally increasing, while their sustainability has decreased slightly; 3) The increase in temperature for the extreme temperature cold indexes is higher than that of the warm indexes, while the increase in temperature for the night indexes is higher than that of the day indexes; 4) From a periodic perspective, the extreme temperature indexes exhibit a periodic variation of 2~6 a, while the extreme precipitation indexes display a periodic variation of about 2 a; 5) The R/S analysis shows that the state of climate warming in Suqian area will continue to persist, the trends of future increase or decrease of extreme precipitation indexes are inconsistent, and the average cycle length of the extreme temperature indexes is mostly greater than 15 a, while the cycle length of the extreme precipitation indexes are mostly less than 10 a.
[1] | 高启慧, 秦圆圆, 梁媚聪, 等. IPCC第六次评估报告综合报告解读及对我国的建议[J]. 环境保护, 2023, 51(Z2): 82-84. |
[2] | 关颖慧. 长江流域极端气候变化及其未来趋势预测[D]: [博士学位论文]. 咸阳: 西北农林科技大学, 2015. |
[3] | Boccolari, M. and Malmusi, S. (2013) Changes in Temperature and Precipitation Extremes Observed in Modena, Italy. Atmospheric Research, 122, 16-31. https://doi.org/10.1016/j.atmosres.2012.10.022 |
[4] | Keggenhoff, I., Elizbarashvili, M., Amiri-Farahani, A. and King, L. (2014) Trends in Daily Temperature and Precipitation Extremes over Georgia, 1971-2010. Weather and Climate Extremes, 4, 75-85. https://doi.org/10.1016/j.wace.2014.05.001 |
[5] | Tong, S.Q., Li, X.Q., Zhang, J.Q., et al. (2019) Spatial and Temporal Variability in Extreme Temperature and Precipitation Events in Inner Mongolia (China) during 1960-2017. Science of the Total Environment, 649, 75-89. https://doi.org/10.1016/j.scitotenv.2018.08.262 |
[6] | 王晓利. 中国沿海极端气候变化及其对NDVI的影响特征研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2017. |
[7] | You, Q.L., Kang, S.C., Aguilar, E., et al. (2011) Changes in Daily Climate Extremes in China and Their Connection to the Large Scale Atmospheric Circulation during 1961-2003. Climate Dynamics, 36, 2399-2417. https://doi.org/10.1007/s00382-009-0735-0 |
[8] | 吴晶璐, 朱红芳, 宗培书, 等. 近30多年江淮流域极端气温指数的时空变化分析: 站点观测和再分析的对比[J]. 气象科学, 2018, 38(4): 464-476. |
[9] | Gobiet, A., Kotlarski, S., Beniston, M., et al. (2014) 21st Century Climate Change in the European Alps—A Review. Science of the Total Environment, 493, 1138-1151. https://doi.org/10.1016/j.scitotenv.2013.07.050 |
[10] | 武文博, 游庆龙, 王岱. 基于均一化降水资料的中国极端降水特征分析[J]. 自然资源学报, 2016, 31(6): 1015-1026. |
[11] | 蒋卓亚. 中国极端气温及降水事件的时空特征研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2017. |
[12] | 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589. |
[13] | Orrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 |
[14] | Zhi, X.F. (2000) Interannual Variability of the Indian Summer Monsoon and Its Modeling with a Zonally Symmetric 2D-Model. Shaker Verlag, Aachen, 152. |
[15] | 鲁菁, 张玉虎, 高峰, 等. 近40年三江平原极端降水时空变化特征分析[J]. 水土保持研究, 2019, 26(2): 272-282. https://doi.org/10.13869/j.cnki.rswc.2019.02.039 |
[16] | 史雯雨, 杨胜勇, 李增永, 等. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 2021, 28(1): 211-217. https://doi.org/10.13869/j.cnki.rswc.2021.01.027 |
[17] | 李国栋, 张俊华, 王乃昂, 等. 基于重标极差分析和非周期循环分析的气候变化趋势预测——以兰州市为例[J]. 干旱区研究, 2013, 30(2): 299-307. https://doi.org/10.13866/j.azr.2013.02.021 |
[18] | 曹晴, 郝振纯, 傅晓洁, 等. 1960-2017年中国极端气候要素时空变化分析[J]. 人民黄河, 2020, 42(2): 11-17. |
[19] | 高绍鑫, 刘静, 常煜. 内蒙古地区四季和年降水量趋势分析[J]. 暴雨灾害, 2022, 41(4): 426-433. |