|
Pharmacy Information 2024
微针给药技术:一种突破传统药物递送方法的新途径
|
Abstract:
微机电系统的快速发展导致人们对微纳米级产品的实用化需求日益强烈,微针透皮给药技术越来越受到人们的关注和关注。微针依靠其微米级的锋利尖端刺入皮肤角质层,形成一定深度的微孔,方便药物分子更轻松地穿过皮肤,或直接实现药物注射,从而实现无痛高效的透皮给药、渗透吸收的目的。不同类型的微针结构具有不同的给药方式和效果。同时,精准给药也对微针阵列微加工技术提出了更高的要求。本文首先系统介绍了用于透皮给药的微针,然后对不同结构的聚合物微针进行力学分析和强度验证,并研究了以微注塑技术为代表的聚合物微针阵列的精密加工。对微针技术的方法以及在新型透皮给药系统中的应用进行了综述。
The rapid development of micro electromechanical systems has led to an increasingly strong demand for the practical application of micro-and nanoscale products, and micro needle transdermal drug delivery technology has attracted more and more attention and concern. Micro needles rely on their micron-level sharp tips to penetrate into the stratum corneum of the skin to form micro-pores of a certain depth, allowing drug molecules to more easily pass through the skin, or to directly inject drugs, thereby achieving painless and efficient transdermal drug delivery, also the purpose of penetration and absorption. Different types of micro needle structures have different delivery methods and effects. At the same time, precise drug delivery also puts forward higher requirements for micro needle array micro-processing technology. This article first systematically introduces micro needles used for transdermal drug delivery, then conducts mechanical analysis and strength verification of polymer micro needles with different structure, and studies the precision processing of polymer micro needle arrays represented by microinjection molding technology. Methods of micro needle technology and their application in novel transdermal drug delivery systems are reviewed.
[1] | Prausnitz, M.R. and Langer, R. (2008) Transdermal Drug Delivery. Nature Biotechnology, 26, 1261-1268. https://doi.org/10.1038/nbt.1504 |
[2] | Prausnitz, M.R., Mitragotri, S. and Langer, R. (2004) Current Status and Future Potential of Transdermal Drug Delivery. Nature Reviews Drug Discovery, 3, 115-124. https://doi.org/10.1038/nrd1304 |
[3] | Al-Japairai, K.A.S., Hamed, A.S., Reddy, V.J., Rebhi, H.A., Motia, A. and Subashini, R. (2020) Current Trends in Polymer Microneedle for Transdermal Drug Delivery. International Journal of Pharmaceutics, 587, Article ID: 119673. https://doi.org/10.1016/j.ijpharm.2020.119673 |
[4] | Bariya, S.H., Gohel, M.C., Mehta, T.A. and Sharma, O.P. (2012) Microneedles: An Emerging Transdermal Drug Delivery System. Journal of Pharmacy and Pharmacology, 64, 11-29. https://doi.org/10.1111/j.2042-7158.2011.01369.x |
[5] | Tariq, N., Ashraf, M.W. and Tayyaba, S. (2022) A Review on Solid Microneedles for Biomedical Applications. Journal of Pharmaceutical Innovation, 17, 1464-1483. https://doi.org/10.1007/s12247-021-09586-x |
[6] | Nagarkar, R., Singh, M., Nguyen, H.X. and Jonnalagadda, K. (2020) A Review of Recent Advances in Microneedle Technology for Transdermal Drug Delivery. Journal of Drug Delivery Science and Technology, 59, Article ID: 101923. https://doi.org/10.1016/j.jddst.2020.101923 |
[7] | Witting, M., Obst, K., Pietzsch, M., Friess, W. and Hedtrich, S. (2015) Feasibility Study for Intraepidermal Delivery of Proteins Using a Solid Microneedle Array. International Journal of Pharmaceutics, 486, 52-58. https://doi.org/10.1016/j.ijpharm.2015.03.046 |
[8] | Kanakaraj, U. and Lhaden, T. (2015) Analysis of Structural Mechanics of Solid Microneedle Using COMSOL Software. 2015 International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, 19-20 March 2015, 1-5. https://doi.org/10.1109/ICIIECS.2015.7193243 |
[9] | Li, C.G., Lee, C.Y., Lee, K. and Jung, H. (2013) An Optimized Hollow Microneedle for Minimally Invasive Blood Extraction. Biomedical Microdevices, 15, 17-25. https://doi.org/10.1007/s10544-012-9683-2 |
[10] | Cárcamo-Martínez, á., Mallon, B., Domínguez-Robles, J., Vora, L.K., Anjani, Q.K. and Donnelly, R.F. (2021) Hollow Microneedles: A Perspective in Biomedical Applications. International Journal of Pharmaceutics, 599, Article ID: 120455. https://doi.org/10.1016/j.ijpharm.2021.120455 |
[11] | Martanto, W., Moore, J.S., Kashlan, O., Kamath, R., Wang, P.M., O’Neal, J.M. and Prausnitz, M.R. (2006) Microinfusion Using Hollow Microneedles. Pharmaceutical Research, 23, 104-113. https://doi.org/10.1007/s11095-005-8498-8 |
[12] | Daugimont, L., Baron, N., Vandermeulen, G., Pavselj, N., Miklavcic, D., Jullien, M.-C., et al. (2010) Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation. The Journal of Membrane Biology, 236, 117-125. https://doi.org/10.1007/s00232-010-9283-0 |
[13] | Juster, H., Van Der Aar, B. and De Brouwer, H. (2019) A Review on Microfabrication of Thermoplastic Polymer‐Based Microneedle Arrays. Polymer Engineering & Science, 59, 877-890. https://doi.org/10.1002/pen.25078 |
[14] | Babity, S., Laszlo, E. and Brambilla, D. (2021) Polymer-Based Microneedles for Decentralized Diagnostics and Monitoring: Concepts, Potentials, and Challenges. Chemistry of Materials, 33, 7148-7159. https://doi.org/10.1021/acs.chemmater.1c01866 |
[15] | Zhuang, J., Wu, D.-M., Xu, H., Huang, Y., Liu, Y. and Sun, J.-Y. (2019) Edge Effect in Hot Embossing and Its Influence on Global Pattern Replication of Polymer-Based Microneedles. International Polymer Processing, 34, 231-238. https://doi.org/10.3139/217.3726 |
[16] | Bhatnagar, S., Gadeela, P.R., Thathireddy, P. and Venuganti, V.V.K. (2019) Micro-Needle-Based Drug Delivery: Materials of Construction. Journal of Chemical Sciences, 131, 1-28. https://doi.org/10.1007/s12039-019-1666-x |
[17] | Bhatnagar, S., Kumari, P., Pattarabhiran, S.P. and Venuganti, V.V.K. (2018) Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies. Aaps Pharmscitech, 19, 1818-1826. https://doi.org/10.1208/s12249-018-1004-5 |
[18] | Teymourian, H., Tehrani, F., Mahato, K. and Wang, J. (2021) Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials, 10, Article ID: 2002255. https://doi.org/10.1002/adhm.202002255 |
[19] | Hassanin, H., Essa, K., Elshaer, A., Imbaby, M., El-Mongy, H.H. and El-Sayed, T.A. (2021) Micro-Fabrication of Ceramics: Additive Manufacturing and Conventional Technologies. Journal of Advanced Ceramics, 10, 1-27. https://doi.org/10.1007/s40145-020-0422-5 |
[20] | Zhang, X.P., He, Y.T., Li, W.X., Chen, B.Z., Zhang, C.Y., Cui, Y. and Guo, X.D. (2022) An Update on Biomaterials as the Microneedle Matrixes for Biomedical Applications. Journal of Materials Chemistry B, 10, 6059-6077. https://doi.org/10.1039/D2TB00905F |
[21] | Bystrova, S. and Luttge, R. (2011) Micromolding for Ceramic Microneedle Arrays. Microelectronic Engineering, 88, 1681-1684. https://doi.org/10.1016/j.mee.2010.12.067 |
[22] | Kuo, S.-C. and Chou, Y. (2004) A Novel Polymer Microneedle Arrays and PDMS Micromolding Technique. Journal of Applied Science and Engineering, 7, 95-98. |
[23] | Donnelly, R.F., Majithiya, R., Singh, T.R.R., Morrow, D.I.J., Garland, M.J., Demir, Y.K., et al. (2011) Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharmaceutical Research, 28, 41-57. https://doi.org/10.1007/s11095-010-0169-8 |
[24] | Dardano, P., Caliò, A., Di Palma, V., Bevilacqua, M.F., Di Matteo, A. and De Stefano, L. (2015) A Photolithographic Approach to Polymeric Microneedles Array Fabrication. Materials, 8, 8661-8673. https://doi.org/10.3390/ma8125484 |
[25] | Kathuria, H., Kochhar, J.S., Fong, M.H.M., Hashimoto, M., Iliescu, C., Yu, H. and Kang, L.F. (2015) Polymeric Microneedle Array Fabrication by Photolithography. JoVE (Journal of Visualized Experiments), 105, E52914. https://doi.org/10.3791/52914-v |
[26] | Yuan, W., Chen, D.F., Sarabia-Estrada, R., Guerrero-Cázares, H., Li, D.W., Qui?ones-Hinojosa, A. and Li, X.D. (2020) Theranostic OCT Microneedle for Fast Ultrahigh-Resolution Deep-Brain Imaging and Efficient Laser Ablation in Vivo. Science Advances, 6, Eaaz9664. https://doi.org/10.1126/sciadv.aaz9664 |
[27] | Krieger, K.J., Bertollo, N., Dangol, M., Sheridan, J.T., Lowery, M.M. and O’Cearbhaill, E.D. (2019) Simple and Customizable Method for Fabrication of High-Aspect Ratio Microneedle Molds Using Low-Cost 3D Printing. Microsystems & Nanoengineering, 5, Article No. 42. https://doi.org/10.1038/s41378-019-0088-8 |
[28] | Wu, M.X., Zhang, Y.J., Huang, H., Li, J.W., Liu, H.Y., Guo, Z.Y., Xue, L.J., Liu, S. and Lei, Y.F. (2020) Assisted 3D Printing of Microneedle Patches for Minimally Invasive Glucose Control in Diabetes. Materials Science and Engineering: C, 117, Article ID: 111299. https://doi.org/10.1016/j.msec.2020.111299 |
[29] | Detamornrat, U., McAlister, E., Hutton, A.R.J., Larra?eta, E. and Donnelly, R.F. (2022) The Role of 3D Printing Technology in Microengineering of Microneedles. Small, 18, Article ID: 2106392. https://doi.org/10.1002/smll.202106392 |
[30] | Soltani-Arabshahi, R., Wong, J.W., Duffy, K.L. and Powell, D.L. (2014) Facial Allergic Granulomatous Reaction and Systemic Hypersensitivity Associated with Microneedle Therapy for Skin Rejuvenation. JAMA Dermatology, 150, 68-72. https://doi.org/10.1001/jamadermatol.2013.6955 |
[31] | Trautmann, A., Heuck, F., Denfeld, R., Ruther, P. and Paul, O. (2006) Detachable Silicon Microneedle Stamps for Allergy Skin Prick Testing. 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, 22-26 January 2006, 434-437. https://doi.org/10.1097/01.DSS.0000790428.70373.f6 |
[32] | Chu, S., Foulad, D.P. and AtanaskovaMesinkovska, N. (2021) Safety Profile for Microneedling: A Systematic Review. Dermatologic Surgery, 47, 1249-1254. https://doi.org/10.1002/adtp.201900064 |
[33] | Zan, P., Than, A., Duong, P.K., Song, J., Xu, C.H. and Chen, P. (2019) Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. Advanced Therapeutics, 2, Article ID: 1900064. |
[34] | Xiang, Y.M., Lu, J.L., Mao, C.Y., Zhu, Y.Z., Wang, C.F., Wu, J., Liu, X.M., Wu, S.L., Kwan, K.Y.H., Cheung, K.M.C. and Yeung, K.W.K. (2023) Ultrasound-Triggered Interfacial Engineering-Based Microneedle for Bacterial Infection Acne Treatment. Science Advances, 9, Eadf0854. https://doi.org/10.1126/sciadv.adf0854 |
[35] | Gill, H.S., Denson, D.D., Burris, B.A. and Prausnitz, M.R. (2008) Effect of Microneedle Design on Pain in Human Subjects. The Clinical Journal of Pain, 24, 585-594. https://doi.org/10.1097/AJP.0b013e31816778f9 |
[36] | Xie, X., Pascual, C., Lieu, C., Oh, S., Wang, J., Zou, B.D., Xie, J.L., Li, Z.H., Xie, J., Yeomans, D.C., Wu, M.X. and Xie, X.M.S. (2017) Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS Nano, 11, 395-406. https://doi.org/10.1021/acsnano.6b06104 |
[37] | Gulati, P., Pannu, S., Kumar, M., Bhatia, A., Mandal, U.K. and Chopra, S. (2022) Microneedles Based Drug Delivery Systems: An Updated Review. International Journal of Health Sciences, 6, 209-242. https://doi.org/10.53730/ijhs.v6n7.10813 |