全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数字认知和数学能力及其内在神经机制的关系
The Relationship among Number Cognition, Mathematical Ability and Their Intrinsic Neural Mechanisms

DOI: 10.12677/ap.2024.143165, PP. 341-345

Keywords: 数字认知,数学逻辑,认知神经机制
Number Cognition
, Mathematical Logic, Cognitive Neural Mechanisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

认知神经科学视野下的一般逻辑推理内在机制已经有了丰富且深入的研究,并提出以“双机制理论”进行解释。两种不同机制理论的关键不同在于是否需要语言及规则的介入。对于有着更大概念外延的数学逻辑,同样也存在这个问题,而这个问题在人们的数量获得过程中就已经产生。相对来说,简单的代数推理是简单数字的加工过程,是一种数学的低阶信息加工,不需要语言介入;而语言推理相对抽象复杂,需要相应的支持语言信息加工的神经机制激活。因此,区分出数字认知和数学逻辑非常有必要。
The mechanisms underlying general logical reasoning from the perspective of cognitive neuroscience have been richly and thoroughly investigated, and a “two-mechanism theory” has been proposed to explain them. The key difference between the two theories lies in the need for language and rules. The same problem exists for mathematical logic, which has a larger conceptual extension, and which arises in the process of acquiring quantities. Comparatively speaking, simple algebraic reasoning is the processing of simple numbers, a form of mathematical low-order information processing that does not require linguistic intervention, whereas linguistic reasoning is relatively abstract and complex and requires the activation of corresponding neural mechanisms that support linguistic information processing. Therefore, it is very necessary to distinguish between number cognition and mathematical logic.

References

[1]  Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The Neural Development of an Abstract Concept of Number. Journal of Cognitive Neuroscience, 21, 2217-2229.
https://doi.org/10.1162/jocn.2008.21159
[2]  Delius, M. S. J. D. (1998). Algebraic Learning and Neural Network Models for Transitive and Non-Transitive Responding. European Journal of Cognitive Psychology, 10, 307-334.
https://doi.org/10.1080/713752279
[3]  Diester, I., & Nieder, A. (2007). Semantic Associations between Signs and Numerical Categories in the Prefrontal Cortex. PLOS Biology, 5, e294.
https://doi.org/10.1371/journal.pbio.0050294
[4]  Feldman, L. B., O’Connor, P. A., & del Prado Martín, F. M. (2009). Early Morphological Processing Is Morphosemantic and Not Simply Morpho-Orthographic: A Violation of Form-Then-Meaning Accounts of Word Recognition. Psychonomic Bulletin & Review, 16, 684-691.
https://doi.org/10.3758/PBR.16.4.684
[5]  Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of Abstract Ordinal Knowledge in the Horizontal Segment of the Intraparietal Sulcus. Journal of Neuroscience, 27, 8952-8956.
https://doi.org/10.1523/JNEUROSCI.2076-07.2007
[6]  Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases. Neuron, 47, 495-501.
https://doi.org/10.1016/j.neuron.2005.06.020
[7]  Gabriel, C. G., dos Santos, M. V., & de Vasconcelos, F. de A. G. (2008). Avalia??o de um programa para promo??o de hábitos alimentares saudáveis em escolares de Florianópolis, Santa Catarina, Brasil. Revista Brasileira de Saúde Materno Infantil, 8, 299-308.
https://doi.org/10.1590/S1519-38292008000300009
[8]  Goel, V. (2007). Anatomy of Deductive Reasoning. Trends in Cognitive Sciences, 11, 435-441.
https://doi.org/10.1016/j.tics.2007.09.003
[9]  Grabner, R. H., & De Smedt, B. (2011). Neurophysiological Evidence for the Validity of Verbal Strategy Reports in Mental Arithmetic. Biological Psychology, 87, 128-136.
https://doi.org/10.1016/j.biopsycho.2011.02.019
[10]  Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual Differences in Mathematical Competence Predict Parietal Brain Activation during Mental Calculation. NeuroImage, 38, 346-356.
https://doi.org/10.1016/j.neuroimage.2007.07.041
[11]  Ischebeck, A., Heim, S., Siedentopf, C., Zamarian, L., Schocke, M., Kremser, C. et al. (2007). Are Numbers Special? Comparing the Generation of Verbal Materials from Ordered Categories (Months) to Numbers and Other Categories (Animals) in an fMRI Study. Human Brain Mapping, 29, 894-909.
https://doi.org/10.1002/hbm.20433
[12]  Jacob, S. N., & Nieder, A. (2008). The ABC of Cardinal and Ordinal Number Representations. Trends in Cognitive Sciences, 12, 41-43.
https://doi.org/10.1016/j.tics.2007.11.006
[13]  Koppelstaetter, F., Poeppel, T. D., Siedentopf, C. M., Ischebeck, A., Verius, M., Haala, I., Mottaghy, F. M., Rhomberg, P., Golaszewski, S., Gotwald, T., Lorenz, I. H., Kolbitsch, C., Felber, S., & Krause, B. J. (2008). Does Caffeine Modulate Verbal Working Memory Processes? An fMRI Study. NeuroImage, 39, 492-499.
https://doi.org/10.1016/j.neuroimage.2007.08.037
[14]  Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional Disconnection and Compensation in Mild Cognitive Impairment: Evidence from DLPFC Connectivity Using Resting-State fMRI. PLOS ONE, 6, e22153.
https://doi.org/10.1371/journal.pone.0022153
[15]  McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the Number Line: Operational Momentum in Non-Symbolic Arithmetic. Perception & Psychophysics, 69, 1324-1333.
https://doi.org/10.3758/BF03192949
[16]  Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53, 293-305.
https://doi.org/10.1016/j.neuron.2006.11.022
[17]  Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 14, 1013-1026.
https://doi.org/10.1006/nimg.2001.0913
[18]  Prabhakaran, V., Rypma, B., & Gabrieli, J. D. E. (2001). Neural Substrates of Mathematical Reasoning: A Functional Magnetic Resonance Imaging Study of Neocortical Activation during Performance of the Necessary Arithmetic Operations Test. Neuropsychology, 15, 115-127.
https://doi.org/10.1037/0894-4105.15.1.115
[19]  Rapp, A. M., Mutschler, D. E., & Erb, M. (2012). Where in the Brain Is Nonliteral Language? A Coordinate-Based Meta-Analysis of Functional Magnetic Resonance Imaging Studies. NeuroImage, 63, 600-610.
https://doi.org/10.1016/j.neuroimage.2012.06.022
[20]  Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cerebral Cortex, 15, 1779-1790.
https://doi.org/10.1093/cercor/bhi055
[21]  Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. (2013). Are Abstract Action Words Embodied? An fMRI Investigation at the Interface between Language and Motor Cognition. Frontiers in Human Neuroscience, 7.
https://doi.org/10.3389/fnhum.2013.00125
[22]  Schmidt-Snoek, G. L., Drew, A. R., Barile, E. C., & Agauas, S. J. (2015). Auditory and Motion Metaphors Have Different Scalp Distributions: An ERP Study. Frontiers in Human Neuroscience, 9.
https://doi.org/10.3389/fnhum.2015.00126
[23]  Tudusciuc, O., & Nieder, A. (2007). Neuronal Population Coding of Continuous and Discrete Quantity in the Primate Posterior Parietal Cortex. Proceedings of the National Academy of Sciences, 104, 14513-14518.
https://doi.org/10.1073/pnas.0705495104
[24]  Von Fersen, L., Wynne, C. D., Delius, J. D., & Staddon, J. E. (1991). Transitive Inference Formation in Pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334-341.
https://doi.org/10.1037//0097-7403.17.3.334

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133