The wave equation of the electron, recently improved, allows physics to obtain all the quantum numbers and other results explaining the hydrogen spectrum. The Pauli exclusion principle then gives the description of electron clouds used in chemistry. The relativistic wave equation is associated with a Lagrangian density, thus also with an energy-momentum tensorial density. The wave of an electron cloud adds these energy-momentum densities, while photons in light are precisely those differences between such energy-momentum densities.
References
[1]
de Broglie, L. (1924) Recherches sur la Théoriedes Ouanta. 1-104. https://fondationlouisdebroglie.org/AFLB-171/these.pdf
[2]
Dirac, P.A.M. (1928) Proceedings of the Royal Society of London, 117, 610-624. https://doi.org/10.1098/rspa.1928.0023
[3]
Darwin, C.G. (1928) Proceedings of the Royal Society of London, 118, 654-680. https://doi.org/10.1098/rspa.1928.0076
[4]
de Broglie, L. (1934) L’électron magnétique. Hermann, Paris.
[5]
Daviau, C., Bertrand, J., Socroun, T. and Girardot, D. (2022) Developing the Theory of Everything. 1-313. https://fondationlouisdebroglie.org/MEMOS/ToE_Eng.pdf
[6]
Daviau, C., Bertrand, J., Socroun, T. and Girardot, D. (2023) Vers une unification de toutes les interactions. 1-320. https://fondationlouisdebroglie.org/MEMOS/ToE_fran.pdf
[7]
Hestenes, D. (1967) Journal of Mathematical Physics, 8, 798-808. https://doi.org/10.1063/1.1705279
[8]
Daviau, C. (1997) Annales de la Fondation Louis de Broglie, 22, 87-103.
[9]
Daviau, C. (2001) Annales de la Fondation Louis de Broglie, 26, 149-171.
[10]
Lochak, G. (1983) Annales de la Fondation Louis de Broglie, 8, 345-370.
[11]
Daviau, C. (1993) Equation de Dirac non linéaire. PhD thesis, Université de Nantes, Nantes.
[12]
Priem, D., Daviau, C. and Racineux, G. (2009) Annales de la Fondation Louis de Broglie, 34, 103.
[13]
Daviau, C., Fargue, D., Priem, D. and Racineux, G. (2013) Annales de la Fondation Louis de Broglie, 38, 139-153.
[14]
Costa de Beauregard, O. (1989) Annales de la Fondation Louis de Broglie, 14-3, 335-342.
[15]
Krüger, H. (1991) New Solutions of the Dirac Equation for Central Fields. In: Hestenes, D. and Weingartshofer, A., Ed., The Electron, Kluwer, Dordrecht, 49-81. https://doi.org/10.1007/978-94-011-3570-2_4
[16]
Daviau, C. and Bertrand, J. (2021) International Journal of Modern Physics, 12, 483-512. https://doi.org/10.4236/jmp.2021.124033
[17]
de Broglie, L. (1950) La mécanique ondulatoire des systèmes de corpuscules. Gauthier-Villars, Paris.