|
3D导板与机器人辅助腰椎皮质骨轨迹置钉技术研究进展
|
Abstract:
随着全球人口老龄化加剧,脊柱退行性疾病患者合并骨质疏松症的发病率逐年增高。腰椎皮质骨轨迹置钉技术是解决骨质疏松患者螺钉松动有效方式之一,皮质骨轨迹螺钉比传统的椎弓根螺钉具有更好的生物力学性能。然而由于皮质骨轨迹置钉点偏内和置钉方向外展头倾角度更大缺乏明确解剖置顶点会增加腰椎皮质骨轨迹置钉手术难度。近年来,3D打印技术与骨科机器人辅助置钉技术的应用在提高骨质疏松患者皮质骨轨迹置钉精准度、增加皮质骨接触层数及减少小关节突关节侵犯率等方面发挥重要作用。本研究回顾国内外文献,对两种辅助置钉技术对腰椎皮质骨轨迹置钉的研究进行综述,同时对两种技术有新的认识和思考。
As the global population is aging, the incidence of combined osteoporosis in patients with degenerative spinal diseases is increasing every year. Lumbar cortical bone trajectory screw placement technique is one of the effective ways to address screw loosening in osteoporotic patients, and cortical bone trajectory screws have better biomechanical properties than conventional pedicle screws. However, the lack of a clear anatomical apex point increases the difficulty of lumbar cortical bone trajectory screwing due to the inward bias of the cortical bone trajectory screwing point and the greater adduction and cephalic tilt in the screwing direction. In recent years, the application of 3D printing technology and orthopaedic robot-assisted screw placement technology has been used to improve the accuracy of screw placement in cortical bone trajectories in osteoporosis patients, and it plays an important role in increasing the number of cortical bone contact layers and reducing the rate of small articular synovial joint invasion. This study reviews the national and international literature on two assisted nailing techniques for lumbar cortical bone trajectory placement and at the same time new insights and reflections on both technologies.
[1] | Wolfert, A.J., Rompala, A., Beyer, G.A., et al. (2022) The Impact of Osteoporosis on Adverse Outcomes after Short Fusion for Degenerative Lumbar Disease. Journal of the American Academy of Orthopaedic Surgeons, 30, 573-579. https://doi.org/10.5435/JAAOS-D-21-01258 |
[2] | 袁玲丹, 宋利格. 《原发性骨质疏松症诊疗指南(2022版)》解读[J]. 同济大学学报(医学版), 2023, 44(6): 777-784. |
[3] | F?rsth, P., et al. (2016) A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. New England Journal of Medicine, 374, 1413-1423. https://doi.org/10.1056/NEJMoa1513721 |
[4] | Rickert, M., Rauschmann, M., Fleege, C., Behrbalk, E. and Harms, J. (2015) Interbody Fusion Procedures. Development from a Historical Perspective. Orthopade, 44, 104-113. https://doi.org/10.1007/s00132-015-3076-1 |
[5] | Jacob, K.C., Patel, M.R., Ribot, M.A., et al. (2022) Single-Level TLIF versus LLIF at L4-5: A Comparison of Patient-Reported Outcomes and Recovery Ratios. Journal of the American Academy of Orthopaedic Surgeons, 30, E495-E505. https://doi.org/10.5435/JAAOS-D-21-00772 |
[6] | Hsu, W.L., Lin, Y.H., Chuang, H.Y., et al. (2020) Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture. Medicina (Kaunas), 56, Article No. 82. https://doi.org/10.3390/medicina56020082 |
[7] | Chen, Y.L., Chen, W.C., Chou, C.W., et al. (2014) Biomechanical Study of Expandable Pedicle Screw Fixation in Severe Osteoporotic Bone Comparing with Conventional and Cement-Augmented Pedicle Screws. Medical Engineering & Physics, 36, 1416-1420. https://doi.org/10.1016/j.medengphy.2014.05.003 |
[8] | Wang, W.T., Guo, C.H., Duan, K., Ma, M.J., Jiang, Y., Liu, T.J., Liu, J.J. and Hao, D.J. (2019) Dual Pitch Titanium-Coated Pedicle Screws Improve Initial and Early Fixation in a Polyetheretherketone Rod Semi-Rigid Fixation System in Sheep. Chinese Medical Journal (England), 132, 2594-2600. https://doi.org/10.1097/CM9.0000000000000335 |
[9] | 刘丝雨, 王彩玲, 郑宇, 等. 钛螺纹钉表面镧羟基磷灰石复合涂层骨结合的实验研究[J]. 河北医科大学学报, 2017, 38(5): 575-578. |
[10] | Ohe, M., Moridaira, H., Inami, S., et al. (2018) Pedicle Screws with a Thin Hydroxyapatite Coating for Improving Fixation at the Bone-Implant Interface in the Osteoporotic Spine: Experimental Study in a Porcine Model. Journal of Neurosurgery: Spine, 28, 679-687. https://doi.org/10.3171/2017.10.SPINE17702 |
[11] | 陈华健, 陈德元, 黄福立, 等. 骨水泥强化空心侧孔椎弓根螺钉内固定术后骨水泥心肺栓塞1例报道[J]. 中国脊柱脊髓杂志, 2022, 32(8): 765-768. |
[12] | Santoni, B.G., Hynes, R.A., Mcgilvray, K.C., et al. (2009) Cortical Bone Trajectory for Lumbar Pedicle Screws. The Spine Journal, 9, 366-373. https://doi.org/10.1016/j.spinee.2008.07.008 |
[13] | Matsukawa, K., Yato, Y., Hynes, R.A., et al. (2017) Cortical Bone Trajectory for Thoracic Pedicle Screws: A Technical Note. Clinical Spine Surgery, 30, E497-E504. https://doi.org/10.1097/BSD.0000000000000130 |
[14] | Ueno, M., Sakai, R., Tannka, K., et al. (2015) Should We Use Cortical Bone Screws for Cortical Bone Trajectory? Journal of Neurosurgery: Spine, 22, 1-6. https://doi.org/10.3171/2014.9.SPINE1484 |
[15] | Matsukawa, K., Yato, Y., Imabayashi, H., et al. (2015) Biomechanical Evaluation of the Fixation Strength of Lumbar Pedicle Screws Using Cortical Bone Trajectory: A Finite Element Study. Journal of Neurosurgery: Spine, 23, 471-478. https://doi.org/10.3171/2015.1.SPINE141103 |
[16] | 丁红涛, 海涌, 刘玉增, 等. 皮质骨轨迹螺钉固定在合并骨质疏松腰椎退行性疾病手术中应用的效果[J]. 中国脊柱脊髓杂志, 2022, 32(12): 1058-1066. |
[17] | Phan, K., Hogan, J., Maharaj, M. and Mobbs, R.J. (2015) Cortical Bone Trajectory for Lumbar Pedicle Screw Placement: A Review of Published Reports. Orthopaedic Surgery, 7, 213-221. https://doi.org/10.1111/os.12185 |
[18] | Keorochana, G., Pairuchvej, S., Trathitephun, W., Arirachakaran, A., Predeeprompan, P. and Kongtharvonskul, J. (2017) Comparative Outcomes of Cortical Screw Trajectory Fixation and Pedicle Screw Fixation in Lumbar Spinal Fusion: Systematic Review and Meta-Analysis. World Neurosurgery, 102, 340-349. https://doi.org/10.1016/j.wneu.2017.03.010 |
[19] | Liu, L., Zhang, S., Liu, G., Yang, B. and Wu, X. (2019) Early Clinical Outcome of Lumbar Spinal Fixation with Cortical Bone Trajectory Pedicle Screws in Patients with Osteoporosis with Degenerative Disease. Orthopedics, 42, E465-E471. https://doi.org/10.3928/01477447-20190604-01 |
[20] | 郭亮兵, 潘玉林, 梅伟, 等. 皮质骨轨迹椎弓根钉在腰椎骨折翻修术中应用[J]. 中国矫形外科杂志, 2022, 30(6): 570-573. |
[21] | 徐子航, 龙浩, 宁旭. 导航辅助椎弓根皮质骨轨迹螺钉置钉的研究进展[J]. 创伤外科杂志, 2022, 24(3): 227-232. |
[22] | Matsukawa, K., Yato, Y., Nemoto, O., et al. (2013) Morphometric Mea_X0002_Surement of Cortical Bone Trajectory for Lumbar Pedicle Screw Insertion Using Computed Tomography. Journal of Spinal Disorders and Techniques, 26, E248-253. https://doi.org/10.1097/BSD.0b013e318288ac39 |
[23] | Iwatsuki, K., Yoshimine, T., Ohnishi, Y., et al. (2014) Isthmus-Guided Cortical Bone Trajectory for Pedicle Screw Insertion. Orthopaedic Surgery, 6, 244-248. https://doi.org/10.1111/os.12122 |
[24] | Dayani, F., Chen, Y.R., Johnson, E., et al. (2019) Minimally Invasive Lumbar Pedicle Screw Fixation Using Cortical Bone Trajectoryscrew Accuracy, Complications, and Learning Curve in 100 Screw Placements. Journal of Clinical Neuroscience, 61, 106-111. https://doi.org/10.1016/j.jocn.2018.10.131 |
[25] | Ding, H., Han, B., Hai, Y., et al. (2021) The Feasibility of Assessing the Cortical Bone Trajectory Screw Placement Accuracy Using a Tra_X0002_Ditional Pedicle Screw Fnsertion Evaluation System. Clinical Spine Surgery, 34, E112-E120. https://doi.org/10.1097/BSD.0000000000001059 |
[26] | Mizuno, M., Kuraishi, K., Umeda, Y., et al. (2014) Midline Lumbar Fusion with Cortical Bone Trajectory Screw. Neurologia Medico-Chirurgica (Tokyo), 54, 716-721. https://doi.org/10.2176/nmc.st.2013-0395 |
[27] | Li, Y., Chen, L., Liu, Y., et al. (2022) Accuracy and Safety of Robot-Assisted Cortical Bone Trajectory Screw Placement: A Comparison of Robot-Assisted Technique with Fluoroscopy-Assisted Approach. BMC Musculoskeletal Disorders, 23, Article No. 328. https://doi.org/10.1186/s12891-022-05206-y |
[28] | Kaito, T., Matsukawa, K., Abe, Y., Fiechter, M., Zhu, X. and Fantigrossi, A. (2018) Cortical Pedicle Screw Placement in Lumbar Spinal Surgery with a Patient-Matched Targeting Guide: A Cadaveric Study. Journal of Orthopaedic Science, 23, 865-869. https://doi.org/10.1016/j.jos.2018.06.005 |
[29] | Zhao, Z., Liu, Z., Hu, Z., Tseng, C., Li, J., Pan, W., Qiu, Y. and Zhu, Z. (2018) Improved Accuracy of Screw Implantation Could Decrease the Incidence of Post-Operative Hydrothorax? O-Arm Navigation vs. Free-Hand in Thoracic Spinal Deformity Correction Surgery. International Orthopaedics, 42, 2141-2146. https://doi.org/10.1007/s00264-018-3889-8 |
[30] | Wang, Y., Shi, S., Zheng, Q., Jin, Y. and Dai, Y. (2021) Application of 3-Dimensional Printing Technology Combined with Guide Plates for Thoracic Spinal Tuberculosis. Medicine (Baltimore), 100, E24636. https://doi.org/10.1097/MD.0000000000024636 |
[31] | Senkoylu, A., Daldal, I. and Cetinkaya, M. (2020) 3D Printing and Spine Surgery. Journal of Orthopaedic Surgery (Hong Kong), 28, 1-7. https://doi.org/10.1177/2309499020927081 |
[32] | Shi, W., Aierken, G., Wang, S., et al. (2021) Application Study of Three-Dimensional Printed Navigation Template between Traditional and Novel Cortical Bone Trajectory on Osteoporosis Lumbar Spine. Journal of Clinical Neuroscience, 85, 41-48. https://doi.org/10.1016/j.jocn.2020.11.038 |
[33] | Shi, W., Aini, M., Dang, L., et al. (2022) Feasibility and Improvement of a Three-Dimensional Printed Navigation Template for Modified Cortical Bone Trajectory Screw Placement in the Lumbar Spine. Frontiers in Surgery, 9, Article ID: 1028276. https://doi.org/10.3389/fsurg.2022.1028276 |
[34] | Petrone, S., Marengo, N., Ajello, M., et al. (2020) Cortical Bone Trajectory Technique’s Outcomes and Procedures for Posterior Lumbar Fusion: A Retrospective Study. Journal of Clinical Neuroscience, 76, 25-30. https://doi.org/10.1016/j.jocn.2020.04.070 |
[35] | 王希骥, 张永远, 杨瑞泽, 等. 3D打印及导航技术辅助腰椎皮质骨轨迹螺钉置入的准确性及疗效分析[J]. 中国组织工程研究, 2019, 23(12): 1864-1869. |
[36] | 陈惠国, 邵荣学, 阮立奇, 等. 3D打印导向模板在骨质疏松腰椎后路融合术中的应用[J]. 实用骨科杂志, 2023, 29(12): 1057-1061. |
[37] | He, K., Dong, C., Wei, H., et al. (2021) A Minimally Invasive Technique Using Cortical Bone Trajectory Screws Assisted by 3D-Printed Navigation Templates in Lumbar Adjacent Segment Degeneration. Clinical Interventions in Aging, 16, 1403-1413. https://doi.org/10.2147/CIA.S318525 |
[38] | Di Perna, G., Marengo, N., Matsukawa, K., et al. (2023) Three-Dimensional Patient-Matched Template Guides Are Able to Increase Mean Diameter and Length and to Improve Accuracy of Cortical Bone Trajectory Screws: A 5-Year International Experience. World Neurosurgery, 170, E542-E549. https://doi.org/10.1016/j.wneu.2022.11.066 |
[39] | Ueno, M., Imura, T., Inoue, G., et al. (2013) Posterior Corrective Fusion Using a Double-Trajectory Technique (Cortical Bone Trajectory Combined with Traditional Trajectory) for Degenerative Lumbar Scoliosis with Osteoporosis: Technical Note. Journal of Neurosurgery: Spine, 19, 600-607. https://doi.org/10.3171/2013.7.SPINE13191 |
[40] | Zhao, Y., Liang, J., Luo, H., et al. (2021) Double-Trajectory Lumbar Screw Placement Guided by a Set of 3D-Printed Surgical Guide Templates: A Cadaver Study. BMC Musculoskeletal Disorders, 22, Article No. 296. https://doi.org/10.1186/s12891-021-04149-0 |
[41] | Verhey, J.T., Haglin, J.M., Verhey, E.M., et al. (2020) Virtual, Augmented, and Mixed Reality Applications in Orthopedic Surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 16, E2067. https://doi.org/10.1002/rcs.2067 |
[42] | 李金泉, 王九龙, 罗杨宇. 骨科手术机器人的研究进展及发展展望[J]. 医疗卫生装备, 2023, 44(6): 101-110. https://doi.org/10.19745/J.1003-8868.2023126 |
[43] | Chenin, L., Peltier, J. and Lefranc, M. (2016) Minimally Invasive Transforaminal Lumbar Interbody Fusion with the ROSA(TM) Spine Robot and Intraoperative Flat-Panel CT Guidance. Acta Neurochirurgica (Wien), 158, 1125-1128. https://doi.org/10.1007/s00701-016-2799-z |
[44] | 方国芳, 吴子祥, 樊勇, 等. Renaissance脊柱机器人辅助手术系统在脊柱疾病中的应用[J]. 中华创伤骨科杂志, 2017, 19(4): 299-303. |
[45] | Kim, H.J., Jung, W.I., Chang, B.S., et al. (2017) A Prospective, Randomized, Controlled Trial of Robot-Assisted vs Freehand Pedicle Screw Fixation in Spine Surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 13, e1779. https://doi.org/10.1002/rcs.1779 |
[46] | 林书, 胡豇, 万仑, 等. 骨科机器人辅助皮质骨轨迹螺钉内固定治疗腰椎退行性疾病[J]. 中国组织工程研究, 2022, 26(15): 2356-2360. |
[47] | 张希诺, 刘玉增, 李越, 等. 骨科手术机器人辅助与X线透视辅助下徒手皮质骨轨迹螺钉置入治疗单节段退行性腰椎疾病的临床对比研究[J]. 首都医科大学学报, 2023, 44(5): 836-844. |
[48] | Mori, K., Yayama, T., Nishizawa, K., et al. (2020) Incidence of Cranial Adjacent Segment Disease after Posterior Lumbar Interbody Fusion Using the Cortical Bone Trajectory Technique for the Treatment of Single-Level Degenerative Lumbar Spondylolisthesis, More than a 2-Year Follow-Up. Spine Surgery and Related Research, 5, 98-103. https://doi.org/10.22603/ssrr.2020-0103 |
[49] | Le, X.F., Shi, Z., Wang, Q.L., Xu, Y.F., Zhao, J.W. and Tian, W. (2020) Rate and Risk Factors of Superior Facet Joint Violation during Cortical Bone Trajectory Screw Placement: A Comparison of Robot-Assisted Approach with a Conventional Technique. Orthopaedic Surgery, 12, 133-140. https://doi.org/10.1111/os.12598 |
[50] | Rho, K., O’Connor, T.E., Lucas, J.M., Pollina, J. and Mullin, J. (2021) Minimally Invasive Robot-Guided Dual Cortical Bone Trajectory for Adjacent Segment Disease. Cureus, 13, E16822. https://doi.org/10.7759/cureus.16822 |
[51] | Wang, C., Zhang, L., Zhang, H., Xu, D. and Ma, X. (2022) Sequential Endoscopic and Robot-Assisted Surgical Solutions for a Rare Fungal Spondylodiscitis, Secondary Lumbar Spinal Stenosis, and Subsequent Discal Pseudocyst Causing Acute Cauda Equina Syndrome: A Case Report. BMC Surgery, 22, Article No. 34. https://doi.org/10.1186/s12893-022-01493-3 |
[52] | 徐子航, 龙浩, 何祖波, 等. 机器人辅助皮质骨轨迹螺钉内固定术治疗腰椎退行性疾病的置钉准确率及学习曲线分析[J]. 中国脊柱脊髓杂志, 2022, 32(4): 305-312. |
[53] | 宋继鹏, 林万程, 姚思远, 等. 腰椎后路短节段减压融合术中应用机器人辅助下皮质骨螺钉与椎弓根螺钉固定的临床疗效比较[J]. 中国脊柱脊髓杂志, 2023, 33(12): 1098-1106. |