Rivers are progressively being exposed to increased anthropogenic pollution
stresses that are undermining their designated uses and affecting sensitive coastal
areas. In this study, three adjacent eastern Mediterranean coastal rivers, Ibrahim,
Kaleb and Beirut, were evaluated. Water quality samples were collected in dry and
wet seasons from different sampling sites along the river from the source to the
outlet which represent a gradient of increased urbanization. The spatiotemporal
variability of the physio-chemical properties, heavy metals (Zn, Pb, Cu, Cr, and
Cd) and organic matter (DOC) were statistically analyzed to better understand the
contribution of point and nonpoint pollution sources. The three rivers (Beirut,
Kaleb and Ibrahim) show a similar behavior in calcium and carbonate alkalinity due
to the carbonate mineral weathering effect, so they are of calcium bicarbonate type
due to their calcareous geological nature. The speciation of anions was affected
by temporal variation. Moreover, it is obvious that the Beirut River has a different
behavioral characteristic where the water is a sulfate type water with a preferable
metal-OM complexation mainly with lead, zinc and copper, whereas Kaleb and Ibrahim
are considered to be of a nitrate phosphate type with a preferable metal inorganic
complexation, especially copper, that has a consistent behavior in both types of
waters. This difference is attributed to the urbanization effect highly impacting
the Beirut River.
References
[1]
Eid-Sabbagh, K., Roukoz, S., Nassif, M.H., Velpuri, N. and Mateo-Sagasta, J. (2022) Analysis of Water Reuse Potential for Irrigation in Lebanon. International Water Management Institute (IWMI). https://doi.org/10.5337/2022.211
[2]
Houri, A. and El Jeblawi, S.W. (2007) Water Quality Assessment of Lebanese Coastal Rivers during Dry Season and Pollution Load into the Mediterranean Sea. Journal of Water and Health, 5, 615-623. https://doi.org/10.2166/wh.2007.047
[3]
UNDP (2021) Lebanon State of the Environment and Future Outlook: Turning the Crises into Opportunities. United Nations Development Programme.
https://www.unicef.org/lebanon/media/7161/file/SOER_Report_EN.pdf
[4]
Khadra, W. and Stuyfzand, P. (2014) Separating Baseline Conditions from Anthropogenic Impacts: Example of the Damour Coastal Aquifer (Lebanon). Hydrological Sciences Journal, 59, 1872-1893. https://doi.org/10.1080/02626667.2013.841912
[5]
Gundersen, P. and Steinnes, E. (2003) Influence of pH and TOC Concentration on Cu, Zn, Cd, and Al Speciation in Rivers. Water Research, 37, 307-318.
https://doi.org/10.1016/S0043-1354(02)00284-1
[6]
Verweij, W., Glazewski, R. and De Haan, H. (1992) Speciation of Copper in Relation to Its Bioavailability. Chemical Speciation & Bioavailability, 4, 43-51.
https://doi.org/10.1080/09542299.1992.11083177
[7]
Galceran, J., Gao, Y., Puy, J., Leermakers, M., Rey-Castro, C., Zhou, C. and Baeyens, W. (2021) Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Frontiers in Chemistry, 9, Article 624511.
https://www.frontiersin.org/articles/10.3389/fchem.2021.624511
https://doi.org/10.3389/fchem.2021.624511
[8]
Buffle, J., Altmann, R.S., Filella, M. and Tessier, A. (1990) Complexation by Natural Heterogeneous Compounds: Site Occupation Distribution Functions, a Normalized Description of Metal Complexation. Geochimica et Cosmochimica Acta, 54, 1535-1553. https://doi.org/10.1016/0016-7037(90)90389-3
[9]
Chávez-Mejía, A.C., Navarro-González, I., Magaña-López, R., Uscanga-Roldán, D., Zaragoza-Sánchez, P.I. and Jiménez-Cisneros, B.E. (2019) Presence and Natural Treatment of Organic Micropollutants and Their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation. Water, 11, Article 2148.
https://doi.org/10.3390/w11102148
[10]
Matar, Z., Soares Pereira, C., Chebbo, G., Uher, E., Troupel, M., Boudahmane, L., Saad, M., Gourlay-France, C., Rocher, V. and Varrault, G. (2015) Influence of Effluent Organic Matter on Copper Speciation and Bioavailability in Rivers under Strong Urban Pressure. Environmental Science and Pollution Research, 22, 19461-19472. https://doi.org/10.1007/s11356-015-5110-6
[11]
Tessier, A. and Turner, D.R. (1995) Metal Speciation and Bioavailability in Aquatic Systems. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. John Wiley & Sons Ltd, New York.
https://www.wiley.com/enhk/Metal+Speciation+and+Bioavailability+in+Aquaticystems-p-9780471958307
[12]
Wang, H. and Zhang, Q. (2019) Research Advances in Identifying Sulfate Contamination Sources of Water Environment by Using Stable Isotopes. International Journal of Environmental Research and Public Health, 16, Article 1914.
https://doi.org/10.3390/ijerph16111914
[13]
Shaban, A. (2021) Rivers of Lebanon: Significant Water Resources under Threats. In: Hromadka II, T.V. and Rao, P., Eds., Hydrology, IntechOpen, London, 1-14.
https://doi.org/10.5772/intechopen.94152
[14]
Baken, S., Degryse, F., Verheyen, L., Merckx, R. and Smolders, E. (2011) Metal Complexation Properties of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by Anthropogenic Ligands. Environmental Science & Technology, 45, 2584-2590. https://doi.org/10.1021/es103532a
[15]
Cheng, T. and Allen, H.E. (2005) Comparison of Zinc Complexation Properties of Dissolved Natural Organic Matter from Different Surface Waters. Journal of Environmental Management, 80, 222-229.
[16]
Shafer, M.M., Overdier, J.T., Phillips, H., Webb, D., Sullivan, J.R. and Armstrong, D.E. (1999) Trace Metal Levels and Partitioning in Wisconsin Rivers. Water, Air, and Soil Pollution, 110, 273-311. https://doi.org/10.1023/A:1005019521097
[17]
Matar, Z. (2012) Influence de la matière organique dissoute d’origine urbaine sur la spéciation et la biodisponibilité des métaux dans les milieux récepteurs anthropisés. Université Paris-Est. https://pastel.hal.science/pastel-00806323/document
[18]
Pernet-Coudrier, B., Companys, E., Galceran, J., Morey, M., Mouchel, J.M., Puy, J., Ruiz, N. and Varrault, G. (2011) Pb-Binding to Various Dissolved Organic Matter in Urban Aquatic Systems: Key Role of the Most Hydrophilic Fraction. Geochimica et Cosmochimica Acta, 75, 4005-4019. https://doi.org/10.1016/j.gca.2011.04.030
[19]
Andjelkovic, D., Andjelkovic, T., Nikolic, R., Purenovic, M., Blagojevic, S., Bojic, A. and Ristic, M. (2012) Leaching of Chromium from Chromium Contaminated Soil: Speciation Study and Geochemical Modeling. Journal of the Serbian Chemical Society, 77, 119-129. https://doi.org/10.2298/JSC101216154A
[20]
Lebanon Water Project (2019) Water Security Analysis for Regional Water Establishments (RWE) and Litani River Authority (LRA) Final Water Security Assessment. https://pdf.usaid.gov/pdf_docs/PA00WH6J.pdf
[21]
Daou, C., Salloum, M., Mouneimne, A.H. and Legube, B. (2013) Multidimensionnal Analysis of Two Lebanese Surface Water Quality: Ibrahim and El-Kalb Rivers.
https://www.researchgate.net/publication/237085403
[22]
El Samrani, A.G., Lartiges, B.S. and Villiéras, F. (2008) Chemical Coagulation of Combined Sewer Overflow: Heavy Metal Removal and Treatment Optimization. Water Research, 42, 951-960. https://doi.org/10.1016/j.watres.2007.09.009
[23]
Leung, K. (2001) One-Dimensional Model of Fecal Coliform in Nahr Ibrahim River (Lebanon). Massachusetts Institute of Technology.
https://dspace.mit.edu/handle/1721.1/84272
[24]
Korfali, S. and Davies, B. (2005) The Relationships of Metals in River Sediments (Nahr-Ibrahim, Lebanon) and Adjacent Floodplain Soils. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development.
https://www.researchgate.net/publication/228796034
[25]
Khawlie, M., Awad, M., Shaban, A., Bou Kheir, R. and Abdallah, C. (2002) Remote Sensing for Environmental Protection of the Eastern Mediterranean Rugged Mountainous Areas, Lebanon. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 13-23. https://ui.adsabs.harvard.edu/abs/2002JPRS...57...13K/abstract
https://doi.org/10.1016/S0924-2716(02)00115-6
[26]
Saab, H., Nassif, N., Samrani, A., Daoud, R., Medawar, S. and Ouaïni, N. (2007) Suivi de la qualité bactériologique des eaux de surface (rivière Nahr Ibrahim, Liban). Journal of Water Science, 20, 325-424. https://doi.org/10.7202/016909ar
[27]
Jurdi, M., Korfali, S., Karahagopian, Y. and Davies, E. (2002) Evaluation of Water Quality of the Qaraaoun Reservoir, Lebanon: Suitability for Multipurpose Usage. Environmental Monitoring and Assessment, 77, 11-30.
[28]
Joanna, D., Michel, A., Fouad, A. and Emmanuel, D. (2018) Occurence of Selected Domestic and Hospital Emerging Micro-Pollutants on a Rural Surface Water Basin Linked to a Groundwater Karst Catchment: The Case Study of the Qachqouch Spring-Lebanon. https://www.aub.edu.lb/hydroGeo_doummar/PublishingImages/Pages/peer/peerposter_II.pdf
[29]
Shaban, A. (2021) Rivers of Lebanon: Significant Water Resources under Threats. In: Hromadka II, T.V. and Rao, P., Eds., Hydrology, IntechOpen, London, 1-14.
https://doi.org/10.5772/intechopen.94152
[30]
Stephenson, A., Labounskaia, I. and Stringer, R. (1997) Heavy Metal and Organic Screen Analysis of Environmental and Waste Samples Associated with indUstrial Activities in Lebanon. https://greenpeace.to/publications/GRL-TN-06-98.pdf
[31]
Frem, S. (2009) Nahr Beirut: Projections on an Infrastructural Landscape.
https://www.researchgate.net/publication/40000477
[32]
Nakhle, K. (2003) Le mercure, le cadmium et le plomb dans les eaux littorales libanaises: Apports et suivi au moyen de bioindicateurs quantitatifs (eponges, bivalves et gasteropodes). https://archimer.ifremer.fr/doc/00000/83/
[33]
Maatouk, E. (2014) Caractérisation des eaux usées au Liban: Impact sur le fonctionnement des stations d’épuration. L’Université Paris-Est.
https://core.ac.uk/download/pdf/48322098.pdf
[34]
Darwish, T., Shaban, A., Portoghese, I., Vurro, M., Khadra, R., Saqallah, S., Drapeau, L., Gascoin, S. and Amacha, N. (2015) Inducing Water Productivity from Snow Cover for Sustainable Water Management in Ibrahim River Basin, Lebanon. Current Journal of Applied Science and Technology, 5, 233-243.
https://www.researchgate.net/publication/283206631
https://doi.org/10.9734/BJAST/2015/13777
[35]
Hanna, N., Lartiges, B., Kazpard, V., Maatouk, E., Amacha, N., Sassine, S. and El Samrani, A. (2018) Hydrogeochemical Processes in a Small Eastern Mediterranean Karst Watershed (Nahr Ibrahim, Lebanon). Aquatic Geochemistry, 24, 325-344.
https://doi.org/10.1007/s10498-018-9346-x
[36]
Shaban, A. (2020) Water Resources of Lebanon, World Water Resources. Springer International Publishing, Cham.
http://link.springer.com/10.1007/978-3-030-48717-1
https://doi.org/10.1007/978-3-030-48717-1
Gaillardet, J., Dupré, B., Louvat, P. and Allègre, C.J. (1999) Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159, 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
[39]
Holland, H.D. (2005) Sea Level, Sediments and the Composition of Seawater. American Journal of Science, 305, 220-239. https://doi.org/10.2475/ajs.305.3.220
[40]
Tipper, E.T., Gaillardet, J., Galy, A., Louvat, P., Bickle, M.J. and Capmas, F. (2010) Calcium Isotope Ratios in the World’s Largest Rivers: A Constraint on the Maximum Imbalance of Oceanic Calcium Fluxes. Global Biogeochemical Cycles, 24, 1-13. https://doi.org/10.1029/2009GB003574
[41]
Weyhenmeyer, A., Hartmann, J., Hessen, O., Kopáček, J., Hejzlar, J., Jacquet, S., Hamilton, K., Verburg, P., Leach, H., Schmid, M., Flaim, G., Nõges, T., Nõges, P., Wentzky, C., Rogora, M., Rusak, A., Kosten, S., Paterson, M., Teubner, K., Higgins, N., Lawrence, G., Kangur, K., Kokorite, I., Cerasino, L., Funk, C., Harvey, R., Moatar, F., de Wit, A. and Zechmeister, T. (2019) Widespread Diminishing Anthropogenic Effects on Calcium in Freshwaters. Scientific Reports, 9, Article No. 10450.
https://doi.org/10.1038/s41598-019-46838-w
[42]
Basson, P.W. and Edgell, H.S. (1971) Calcareous Algae from the Jurassic and Cretaceous of Lebanon. Micropaleontology, 17, 411-433. https://doi.org/10.2307/1484871
[43]
Nader, F. (2014) The Geology of Lebanon.
https://www.researchgate.net/publication/264273527
[44]
Byrne, R.H. and Miller, W.L. (1985) Copper(II) Carbonate Complexation in Seawater. Geochimica et Cosmochimica Acta, 49, 1837-1844.
https://doi.org/10.1016/0016-7037(85)90153-X
[45]
Conry, R.R. (2005) Copper: Inorganic & Coordination Chemistry: Based in Part on the Article Copper: Inorganic & Coordination Chemistry by Rebecca R. Conry & Kenneth D. Karlin Which Appeared in the Encyclopedia of Inorganic Chemistry, First Edition. In: King, R.B., Crabtree, R.H., Lukehart, C.M., Atwood, D.A. and Scott, R.A., Eds., Encyclopedia of Inorganic Chemistry, Wiley New York, 1-17.
https://doi.org/10.1002/0470862106.ia052
[46]
Constantino, C., Comber, S.D.W. and Scrimshaw, M.D. (2017) The Effect of Wastewater Effluent Derived Ligands on Copper and Zinc Complexation. Environmental Science and Pollution Research, 24, 8363-8374.
https://doi.org/10.1007/s11356-016-8332-3
[47]
Dykyjová, D. (1983) U. Förstner and G. T. W. Wittmann Metal Pollution in the Aquatic Environment: Springer Verlag, Berlin, Heidelberg et New York, 2nd revised edition, 486 pp., 102 Figs., 94 Tabs. Price US $ 46.70. Folia Geobotanica & Phytotaxonomica, 18, 194. https://doi.org/10.1007/BF02857454
[48]
Gulens, J., Leeson, P.K. and Séguin, L. (1984) Kinetic Influences on Studies of Copper(II) Hydrolysis by Copper Ion-Selective Electrode. Analytica Chimica Acta, 156, 19-31. https://doi.org/10.1016/S0003-2670(00)85533-6
[49]
Klučáková, M. (2012) Complexation of Copper(II) with Humic Acids Studied by Ultrasound Spectrometry. Organic Chemistry International, 2012, Article ID: 206025. https://doi.org/10.1155/2012/206025
[50]
Rader, K.J., Carbonaro, R.F., van Hullebusch, E.D., Baken, S. and Delbeke, K. (2019) The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environmental Toxicology and Chemistry, 38, 1386-1399.
https://doi.org/10.1002/etc.4440
[51]
Shank, G.C., Skrabal, S.A., Whitehead, R.F. and Kieber, R.J. (2004) Strong Copper Complexation in an Organic-Rich Estuary: The Importance of Allochthonous Dissolved Organic Matter. Marine Chemistry, 88, 21-39.
https://doi.org/10.1016/j.marchem.2004.03.001
[52]
Sunda, W.G. and Hanson, P.J. (1979) Chemical Speciation of Copper in River Water. In: Jenne, E.A., Ed., Chemical Modeling in Aqueous Systems, ACS Symposium Series, American Chemical Society, Washington DC, 147-180.
https://doi.org/10.1021/bk-1979-0093.ch008
[53]
Van Den Berg, C.M.G. (1984) Organic and Inorganic Speciation of Copper in the Irish Sea. Marine Chemistry, 14, 201-212.
https://doi.org/10.1016/0304-4203(84)90042-2
[54]
Forstner, U. and Wittman, G. (1983) Metal Pollution in the Aquatic Environment. Springer Verlag, Berlin.
[55]
Andarani, P., Yokota, K., Saga, M., Inoue, T. and Matsumoto, Y. (2020) Study of Zinc Pollution in River Water: Average Mass Balance Based on Irrigation Schedule. River Research and Applications, 36, 1286-1295. https://doi.org/10.1002/rra.3632
[56]
Ahmed, M.F., Mokhtar, M.B., Alam, L., Mohamed, C.A.R. and Ta, G.C. (2020) Investigating the Status of Cadmium, Chromium and Lead in the Drinking Water Supply Chain to Ensure Drinking Water Quality in Malaysia. Water, 12, Article 2653. https://doi.org/10.3390/w12102653
[57]
Khatib, J.M., Baydoun, S. and ElKordi, A.A. (2018) Water Pollution and Urbanisation Trends in Lebanon: Litani River Basin Case Study. In: Charlesworth, S.M. and Booth, C.A., Eds., Urban Pollution, John Wiley & Sons, Chichester, 397-415.
https://doi.org/10.1002/9781119260493.ch30