全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ceRNA在膀胱癌中的研究进展
Research Progress of ceRNA in Bladder Can-cer

DOI: 10.12677/ACM.2024.143839, PP. 1280-1288

Keywords: ceRNA,miRNA,lncRNA,circRNA,假基因,膀胱癌
ceRNA
, miRNA, lncRNA, circRNA, Pseudogene, Bladder Cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

膀胱癌是全世界范围内的一种常见恶性肿瘤,是泌尿系统中发生率最高的恶性癌症,严重影响人们健康。竞争性内源RNA (competing endogenous RNA, ceRNA)是一种新的转录后RNA相互调控机制,越来越多的研究发现长链非编码RNA (long non-coding RNA, lncRNA)、环状RNA (circular RNA, circRNA)和假基因(pseudogenes)可以与微小RNA (micro RNA, miRNA)竞争,影响靶RNA的稳定性或翻译,从而调控基因表达。由于任何拥有miRNA反应元件结构的转录产物理论上都能够作为ceRNA发挥功能,ceRNA理论对整合疾病发病机理,尤其对于肿瘤研究有重要意义。目前越来越多的研究表明ceRNA在肿瘤的基因调控及肿瘤细胞增殖、凋亡、细胞周期、侵袭和转移等各种生物过程中发挥重要作用。本文对ceRNA分类及常见的ceRNA在膀胱癌中的研究进展作一综述。
Bladder cancer is a common malignant tumor worldwide and the most common malignant cancer in the urinary system, which seriously affects people’s health. Competing endogenous RNA is a new RNA transcription regulatory mechanism. More and more studies have found that lncRNA, circRNA and pseudogenes that can compete with miRNA, influence the stability of the target RNA or transla-tion, thus regulate gene expression. Given that any transcripts harbouring MREs can theoretically function as ceRNAs, ceRNAs theory plays an important role in coordinating disease pathogenesis, especially in tumor research. At present, more and more studies have shown that ceRNA plays a pivotal role in the gene regulation and the proliferation, apoptosis, cell cycle, invasion and metasta-sis of cancer cells. This article reviews the progress of ceRNA classification, functions in bladder cancer.

References

[1]  Salmena, L., Poliseno, L., Tay, Y., et al. (2011) A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358.
https://doi.org/10.1016/j.cell.2011.07.014
[2]  Hall, M.C., Chang, S.S., Dalbagni, G., et al. (2007) Guideline for the Management of Nonmuscle Invasive Bladder Cancer (Stages Ta, T1, and Tis): 2007 Update. The Journal of Urology, 178, 2314-2330.
https://doi.org/10.1016/j.juro.2007.09.003
[3]  Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[4]  温登瑰, 单保恩, 张思维, 等. 2003-2007年中国肿瘤登记地区膀胱癌的发病与死亡分析[J]. 肿瘤, 2012, 32(4): 256-262.
[5]  陈宇豪, 程文. 膀胱癌早期诊断方法的研究进展[J]. 肿瘤学杂志, 2020, 26(7): 650-654.
[6]  Kaufman, D.S., Shipley, W.U. and Feldman, A.S. (2009) Bladder Cancer. Lancet, 374, 239-249.
https://doi.org/10.1016/S0140-6736(09)60491-8
[7]  Ng, K., Stenzl, A., Sharma, A. and Vasdev, N. (2021) Uri-nary Biomarkers in Bladder Cancer: A Review of the Current Landscape and Future Directions. Urologic Oncology, 39, 41-51.
https://doi.org/10.1016/j.urolonc.2020.08.016
[8]  Jeck, W.R. and Sharpless, N.E. (2014) Detecting and Characterizing Circular RNAs. Nature Biotechnology, 32, 453-461.
https://doi.org/10.1038/nbt.2890
[9]  Liu, Y.C., Li, J.R., Sun, C.H., et al. (2016) CircNet: A Database of Circular RNAs Derived from Transcriptome Sequencing Data. Nucleic Acids Research, 44, D209-D215.
https://doi.org/10.1093/nar/gkv940
[10]  Chen, L.L. and Yang, L. (2015) Regulation of CircRNA Biogenesis. RNA Biology, 12, 381-388.
https://doi.org/10.1080/15476286.2015.1020271
[11]  Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., et al. (2014) CircRNA Biogenesis Competes with Pre-MRNA Splicing. Molecular Cell, 56, 55-66.
https://doi.org/10.1016/j.molcel.2014.08.019
[12]  Memczak, S., Jens, M., Elefsinioti, A., et al. (2013) Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature, 495, 333-338.
https://doi.org/10.1038/nature11928
[13]  李睿, 罗云波. lncRNA及其生物学功能[J]. 农业生物技术学报, 2016, 24(4): 600-612.
[14]  Eissa, S., Safwat, M., Matboli, M., et al. (2019) Measurement of Urinary Level of a Specific Competing Endogenous RNA Network (FOS and RCAN MRNA/MiR-324-5p, MiR-4738-3p, /LncRNA MiR-497-HG) Enables Diagnosis of Bladder Cancer. Urologic Oncology, 37, 292.e19-292.e27.
https://doi.org/10.1016/j.urolonc.2018.12.024
[15]  Moran, V.A., Perera, R.J. and Khalil, A.M. (2012) Emerging Functional and Mechanistic Paradigms of Mammalian Long Non-Coding RNAs. Nucleic Acids Research, 40, 6391-6400.
https://doi.org/10.1093/nar/gks296
[16]  Kartha, R.V. and Subramanian, S. (2014) Competing Endogenous RNAs (CeRNAs): New Entrants to the Intricacies of Gene Regulation. Frontiers in Genetics, 5, Article 8.
https://doi.org/10.3389/fgene.2014.00008
[17]  Poliseno, L. (2012) Pseudogenes: Newly Discovered Players in Human Cancer. Science Signaling, 5, re5.
https://doi.org/10.1126/scisignal.2002858
[18]  Proudfoot, N. (1980) Pseudogenes. Nature, 286, 840-841.
https://doi.org/10.1038/286840a0
[19]  Esposito, F., De,Martino, M., Petti, M.G., et al. (2014) HMGA1 Pseudogenes as Candidate Proto-Oncogenic Competitive Endogenous RNAs. Oncotarget, 5, 8341-8354.
https://doi.org/10.18632/oncotarget.2202
[20]  Lu, T.X. and Rothenberg, M.E. (2018) MicroRNA. The Journal of Allergy and Clinical Immunology, 141, 1202-1207.
https://doi.org/10.1016/j.jaci.2017.08.034
[21]  Xu, J., Li, Y., Lu, J., et al. (2015) The MRNA Related CeR-NA-CeRNA Landscape and Significance across 20 Major Cancer Types. Nucleic Acids Research, 43, 8169-8182.
https://doi.org/10.1093/nar/gkv853
[22]  He, L. and Hannon, G.J. (2004) MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nature Reviews Genetics, 5, 522-531.
https://doi.org/10.1038/nrg1379
[23]  Koturbash, I., Tolleson, W.H., Guo, L., et al. (2015) MicroRNAs as Pharmacogenomic Biomarkers for Drug Efficacy and Drug Safety Assessment. Biomarkers in Medicine, 9, 1153-1176.
https://doi.org/10.2217/bmm.15.89
[24]  Wu, W., Sun, M., Zou, G.M. and Chen, J.J. (2007) MicroRNA and Cancer: Current Status and Prospective. International Journal of Can-cer, 120, 953-960.
https://doi.org/10.1002/ijc.22454
[25]  Davis, B.N. and Hata, A. (2009) Regulation of mi-croRNA Biogenesis: A miRiad of Mechanisms. Cell Communication and Signaling, 7, Article No. 18.
https://doi.org/10.1186/1478-811X-7-18
[26]  Schaefer, A., Stephan, C., Busch, J., et al. (2010) Diagnostic, Prog-nostic and Therapeutic Implications of MicroRNAs in Urologic Tumors. Nature Reviews Urology, 7, 286-297.
https://doi.org/10.1038/nrurol.2010.45
[27]  李先承, 李秀男, 宋希双. MicroRNA-21与实体肿瘤关系的研究进展[J]. 大连医科大学学报, 2012, 34(2): 182-188.
[28]  T?lle, A., Jung, M., Rabenhorst, S., et al. (2013) Identification of microRNAs in Blood and Urine as Tumour Markers for the Detection of Urinary Bladder Cancer. Oncology Reports, 30, 1949-1956.
https://doi.org/10.3892/or.2013.2621
[29]  Yoshikawa, Y., Taniguchi, K., Tsujino, T., et al. (2019) Anti-Cancer Effects of a Chemically Modified MiR-143 on Bladder Cancer by Either Systemic or Intravesical Treatment. Molecular Therapy Methods & Clinical Development, 13, 290-302.
https://doi.org/10.1016/j.omtm.2019.02.005
[30]  Feng, Y., Liu, J., Kang, Y., et al. (2014) MiR-19a Acts as an Oncogenic MicroRNA and Is Up-Regulated in Bladder Cancer. Journal of Experimental & Clinical Cancer Research, 33, Article No. 67.
https://doi.org/10.1186/s13046-014-0067-8
[31]  Mao, X.P., Zhang, L.S., Huang, B., et al. (2015) Mir-135a En-hances Cellular Proliferation through Post-Transcriptionally Regulating PHLPP2 and FOXO1 in Human Bladder Cancer. Journal of Translational Medicine, 13, Article No. 86.
https://doi.org/10.1186/s12967-015-0438-8
[32]  Yang, R., Liu, M., Liang, H., et al. (2016) MiR-138-5p Contrib-utes to Cell Proliferation and Invasion by Targeting Survivin in Bladder Cancer Cells. Molecular Cancer, 15, Article No. 82.
https://doi.org/10.1186/s12943-016-0569-4
[33]  Wang, J., Zhang, X., Wang, L., et al. (2015) MicroRNA-214 Suppresses Oncogenesis and Exerts Impact on Prognosis by Targeting PDRG1 in Bladder Cancer. PLOS ONE, 10, e0118086.
https://doi.org/10.1371/journal.pone.0118086
[34]  Feng, Y., Kang, Y., He, Y., et al. (2014) Mi-croRNA-99a Acts as a Tumor Suppressor and Is Down-Regulated in Bladder Cancer. BMC Urology, 14, Article No. 50.
https://doi.org/10.1186/1471-2490-14-50
[35]  Xu, X., Li, S., Lin, Y., et al. (2013) MicroRNA-124-3p Inhibits Cell Migration and Invasion in Bladder Cancer Cells by Targeting ROCK1. Journal of Translational Medicine, 11, Article No. 276.
https://doi.org/10.1186/1479-5876-11-276
[36]  Cao, Y., Yu, S.L., Wang, Y., et al. (2011) MicroRNA-Dependent Regulation of PTEN after Arsenic Trioxide Treatment in Bladder Cancer Cell Line T24. Tumour Biology, 32, 179-188.
https://doi.org/10.1007/s13277-010-0111-z
[37]  Du, M., Shi, D., Yuan, L., et al. (2015) Circulating MiR-497 and MiR-663b in Plasma Are Potential Novel Biomarkers for Bladder Cancer. Scientific Reports, 5, Article No. 10437.
https://doi.org/10.1038/srep10437
[38]  Witwer, K.W. and Halushka, M.K. (2016) Toward the Promise of Mi-croRNAs—Enhancing Reproducibility and Rigor in microRNA Research. RNA Biology, 13, 1103-1116.
https://doi.org/10.1080/15476286.2016.1236172
[39]  Teng, J., Ai, X., Jia, Z., et al. (2019) Long Non-Coding RNA ARAP1-AS1 Promotes the Progression of Bladder Cancer by Regulating MiR-4735-3p/NOTCH2 Axis. Cancer Biology & Therapy, 20, 552-561.
https://doi.org/10.1080/15384047.2018.1538613
[40]  Quan, J., Pan, X., Zhao, L., et al. (2018) LncRNA as a Di-agnostic and Prognostic Biomarker in Bladder Cancer: A Systematic Review and Meta-Analysis. OncoTargets and Therapy, 11, 6415-6424.
https://doi.org/10.2147/OTT.S167853
[41]  Li, L.J., Zhu, J.L., Bao, W.S., et al. (2014) Long Noncoding RNA GHET1 Promotes the Development of Bladder Cancer. International Journal of Clinical and Experimental Pathology, 7, 7196-7205.
[42]  Wang, M., Guo, C., Wang, L., et al. (2018) Long Noncoding RNA GAS5 Promotes Bladder Cancer Cells Apoptosis Through Inhibiting EZH2 Transcription. Cell Death & Disease, 9, Article No. 238.
https://doi.org/10.1038/s41419-018-0264-z
[43]  Liu, Z., Wang, W., Jiang, J., et al. (2013) Downregulation of GAS5 Promotes Bladder Cancer Cell Proliferation, Partly by Regulating CDK6. PLOS ONE, 8, e73991.
https://doi.org/10.1371/journal.pone.0073991
[44]  Cao, Q., Wang, N., Qi, J., et al. (2016) Long Non-Coding RNA-GAS5 Acts as a Tumor Suppressor in Bladder Transitional Cell Carcinoma via Regulation of Chemokine (C-C Motif) Ligand 1 Expression. Molecular Medicine Reports, 13, 27-34.
https://doi.org/10.3892/mmr.2015.4503
[45]  Lv, M., Zhong, Z., Huang, M., et al. (2017) LncRNA H19 Regulates Epithelial-Mesenchymal Transition and Metastasis of Bladder Cancer by MiR-29b-3p as Competing Endogenous RNA. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1864, 1887-1899.
https://doi.org/10.1016/j.bbamcr.2017.08.001
[46]  Xue, M., Pang, H., Li, X., et al. (2016) Long Non-Coding RNA Urothelial Cancer-Associated 1 Promotes Bladder Cancer Cell Migration and Invasion by Way of the Hsa-MiR-145-ZEB1/2-FSCN1 Pathway. Cancer Science, 107, 18-27.
https://doi.org/10.1111/cas.12844
[47]  Iliev, R., Kleinova, R., Juracek, J., et al. (2016) Overexpression of Long Non-Coding RNA TUG1 Predicts Poor Prognosis and Promotes Cancer Cell Proliferation and Migration in High-Grade Muscle-Invasive Bladder Cancer. Tumour Biology, 37, 13385-13390.
https://doi.org/10.1007/s13277-016-5177-9
[48]  Shang, C., Guo, Y., Zhang, H., et al. (2016) Long Noncoding RNA HOTAIR Is a Prognostic Biomarker and Inhibits Chemosensitivity to Doxorubicin in Bladder Transitional Cell Carcinoma. Cancer Chemotherapy and Pharmacology, 77, 507-513.
https://doi.org/10.1007/s00280-016-2964-3
[49]  Li, C., Cui, Y., Liu, L.F., et al. (2017) High Expression of Long Noncoding RNA MALAT1 Indicates a Poor Prognosis and Promotes Clinical Progression and Metastasis in Bladder Cancer. Clinical Genitourinary Cancer, 15, 570-576.
https://doi.org/10.1016/j.clgc.2017.05.001
[50]  Xie, H., Liao, X., Chen, Z., et al. (2017) LncRNA MALAT1 In-hibits Apoptosis and Promotes Invasion by Antagonizing MiR-125b in Bladder Cancer Cells. Journal of Cancer, 8, 3803-3811.
https://doi.org/10.7150/jca.21228
[51]  Jiao, D., Li, Z., Zhu, M., et al. (2018) LncRNA MALAT1 Promotes Tumor Growth and Metastasis by Targeting MiR-124/Foxq1 in Bladder Transitional Cell Carcinoma (BTCC). American Journal of Cancer Research, 8, 748-760.
[52]  Zhan, Y., Chen, Z., Li, Y., et al. (2018) Long Non-Coding RNA DANCR Promotes Malignant Phenotypes of Bladder Cancer Cells by Modulating the MiR-149/MSI2 Axis as a CeRNA. Journal of Experimental & Clinical Cancer Research, 37, Article No. 273.
https://doi.org/10.1186/s13046-018-0921-1
[53]  Zhong, Z., Huang, M., Lv, M., et al. (2017) Circular RNA MYLK as a Competing Endogenous RNA Promotes Bladder Cancer Progression through Modulating VEGFA/VEGFR2 Signaling Pathway. Cancer Letters, 403, 305-317.
https://doi.org/10.1016/j.canlet.2017.06.027
[54]  Yang, C., Wu, S., Wu, X., et al. (2019) Silencing Circular RNA UVRAG Inhibits Bladder Cancer Growth and Metastasis by Targeting the MicroRNA-223/Fibroblast Growth Factor Receptor 2 Axis. Cancer Science, 110, 99-106.
https://doi.org/10.1111/cas.13857
[55]  Su, H., Tao, T., Yang, Z., et al. (2019) Circular RNA CTFRC Acts as the Sponge of MicroRNA-107 to Promote Bladder Carcinoma Progression. Molecular Cancer, 18, Article No. 27.
https://doi.org/10.1186/s12943-019-0951-0
[56]  Li, Y., Zheng, F., Xiao, X., et al. (2017) CircHIPK3 Sponges MiR-558 to Suppress Heparanase Expression in Bladder Cancer Cells. EMBO Reports, 18, 1646-1659.
https://doi.org/10.15252/embr.201643581
[57]  Xie, F., Li, Y., Wang, M., et al. (2018) Circular RNA BCRC-3 Suppresses Bladder Cancer Proliferation through MiR-182-5p/P27 Axis. Molecular Cancer, 17, Article No. 144.
https://doi.org/10.1186/s12943-018-0892-z
[58]  Zheng, Q., Bao, C., Guo, W., et al. (2016) Circular RNA Profiling Reveals an Abundant CircHIPK3 That Regulates Cell Growth by Sponging Multiple MiRNAs. Nature Communications, 7, Article No. 11215.
https://doi.org/10.1038/ncomms11215
[59]  Liu, H., Chen, D., Bi, J., et al. (2018) Circular RNA CircUBXN7 Re-presses Cell Growth and Invasion by Sponging MiR-1247-3p to Enhance B4GALT3 Expression in Bladder Cancer. Ag-ing, 10, 2606-2623.
https://doi.org/10.18632/aging.101573

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133