|
多酚对高血压的影响及其与肠道菌群有关机制的研究进展
|
Abstract:
高血压是以血压升高为主要特点的全身性疾病。我国人群患病率水平仍处在较高水平,且高血压控制率总体仍较低。高血压会导致机体靶器官的损伤,包括心脏、肾脏、血管、大脑等靶器官功能和结构的损伤等。目前,高血压是我国面临的重要公共卫生问题,造成了严重的医疗和经济负担。因此,进一步探寻防治高血压的策略及食物来源的植物化学物以降低对药品的依赖具有重要意义。肠道菌群是寄居在人体肠道内的微生物群,与正常人群相比,高血压人群的肠型改变、肠道菌群多样性降低以及某些细菌种群丰度改变。但是肠道菌群作为高血压防治靶点的潜力还需要进一步深入研究。多酚是水果和蔬菜中发现的具有生物活性的化合物,有改善其色泽、风味和加强药理活性等作用。目前虽然有研究证据支持某些多酚亚类具有抗炎、调节肠道菌群以及降低血脂的作用,但多酚参与血压调节及其潜在机制仍需要更多的证据来支持。因此,本综述旨在系统回顾和综合分析国内外关于多酚对高血压的影响及基于肠道菌群的机制研究,以期为高血压的防治提供新的思路和方法。
Hypertension, characterized by elevated blood pressure, is a systemic disease that poses a sig-nificant public health problem. The prevalence of hypertension in our population remains high, while the overall rate of hypertension control is still at a low level. Hypertension can cause damage to various target organs of the organism, including the heart, kidneys, blood vessels and brain. Consequently, it leads to serious medical and economic burdens. Therefore, it is im-portant to further explore strategies to combat hypertension and develop dietary programs that can reduce reliance on medication. The gut flora, which refers to the microbiota residing in the human gut, undergoes altered gut shape, reduced diversity of gut flora, and altered abun-dance of certain bacterial populations in hypertensive individuals compared to normal popula-tions. However, further in-depth studies are required to fully understand the potential of tar-geting gut flora for hypertension control. Polyphenols, biologically active compounds found in fruits and vegetables, have been shown to improve their color, flavor, and enhance pharmaco-logical activity. While research supports the anti-inflammatory, intestinal flora modulating, and lipid-lowering effects of other polyphenol subclasses, more evidence is needed to establish the involvement of apple polyphenols in blood pressure regulation and their underlying mecha-nisms. Therefore, the aim of this review is to systematically review and comprehensively ana-lyze domestic and international studies on the effects of polyphenols on hypertension and their mechanisms based on intestinal flora, with a view to providing new ideas and approaches for the prevention and treatment of hypertension.
[1] | Pierdomenico, S.D., Di Nicola, M., Esposito, A.L., Di Mascio, R., Ballone, E., Lapenna, D. and Cuccurullo, F. (2009) Prognostic Value of Different Indices of Blood Pressure Variability in Hypertensive Patients. American Journal of Hypertension, 22, 842-847. https://doi.org/10.1038/ajh.2009.103 |
[2] | Derhaschnig, U., Testori, C., Ried-mueller, E., Aschauer, S., Wolzt, M. and Jilma, B. (2013) Hypertensive Emergencies Are Associated with Elevated Markers of Inflammation, Coagulation, Platelet Activation and Fibrinolysis. Journal of Human Hypertension, 27, 368-373. https://doi.org/10.1038/jhh.2012.53 |
[3] | Niiranen, T.J., et al. (2017) Risk for Hypertension Crosses Generations in the Community: A Multi-Generational Cohort Study. European Heart Journal, 38, 2300-2308. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6075041 |
[4] | Collaborators G 2019 RF (2020) Global Bur-den of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet (London, England), 396, 1223-1249.
https://doi.org/10.1016/S0140-6736(20)30752-2 |
[5] | Beaney, T., Schutte, A.E., Stergiou, G.S., et al. (2020) May Measurement Month 2019: The Global Blood Pressure Screening Campaign of the International Society of Hypertension. Hypertension, 76, 333-341.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14874 |
[6] | (2021) Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Popula-tion-Representative Studies with 104 Million Participants. The Lancet, 398, 957-980.
https://doi.org/10.1016/S0140-6736(21)01330-1 |
[7] | Albasri, A., et al. (2021) Association between Anti-hypertensive Treatment and Adverse Events: Systematic Review and Meta-Analysis. BMJ, 372, n189. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7873715/ |
[8] | Yamagata, K. (2021) Prevention of Vascular Endothelial Dysfunction by Polyphenols: Role in Cardiovascular Disease Prevention. In: Phytopharmaceuticals, John Wiley & Sons, Hoboken, 223-246.
https://doi.org/10.1002/9781119682059.ch11 |
[9] | Tanghe, A., et al. (2021) Evaluation of Blood Pressure Lowering Effects of Cocoa Flavanols in Diabetes Mellitus: A Systematic Review and Meta-Analysis. Journal of Functional Foods, 79, Article ID: 104399.
https://sci-hub.hkvisa.net/10.1016/j.jff.2021.104399 https://doi.org/10.1016/j.jff.2021.104399 |
[10] | Hooper, L., Kay, C., Abdelhamid, A., Kroon, P.A., Cohn, J.S., Rimm, E.B. and Cassidy, A. (2012) Effects of Chocolate, Cocoa, and Flavan-3-Ols on Cardiovascular Health: A Systematic Review and Meta-Analysis of Randomized Trials. The American Journal of Clinical Nutrition, 95, 740-751. https://doi.org/10.3945/ajcn.111.023457 |
[11] | Sekar, D., Shilpa, B.R. and Das, A.J. (2017) Rele-vance of MicroRNA 21 in Different Types of Hypertension. Current Hypertension Reports, 19, Article No. 57. https://doi.org/10.1007/s11906-017-0752-z |
[12] | Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2023) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article ID: 1098725.
https://doi.org/10.3389/fimmu.2022.1098725 |
[13] | Richards, E.M., Li, J., Stevens, B.R., Pepine, C.J. and Raizada, M.K. (2022) Gut Microbiome and Neuroinflammation in Hypertension. Circulation Research, 130, 401-417. https://doi.org/10.1161/CIRCRESAHA.121.319816 |
[14] | Yang, Z., Wang, Q., Liu, Y., Wang, L., Ge, Z., Li, Z., Feng, S. and Wu, C. (2023) Gut Microbiota and Hypertension: Association, Mechanisms and Treatment. Clinical and Experimental Hypertension, 45, Article ID: 2195135.
https://doi.org/10.1080/10641963.2023.2195135 |
[15] | Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14. https://doi.org/10.1186/s40168-016-0222-x |
[16] | Del Rio, D., et al. (2013) Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxidants & Redox Signaling, 18, 1818-1892. |
[17] | Zdunczyk, Z., Frejnagel, S., Wróblewska, M., Ju?kiewicz, J., Oszmiański, J. and Estrella, I. (2002) Biological Activity of Polyphenol Extracts from Different Plant Sources. Food Research International, 35, 183-186.
https://doi.org/10.1016/S0963-9969(01)00181-8 |
[18] | Bertelli, A., Biagi, M., Corsini, M., Baini, G., Cappel-lucci, G. and Miraldi, E. (2021) Polyphenols: From Theory to Practice. Foods, 10, Article No. 2595. https://doi.org/10.3390/foods10112595 |
[19] | Andersen, K., Kesper, M.S., Marschner, J.A., et al. (2017) In-testinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflam-mation. Journal of the American Society of Nephrology, 28, Article No. 76. https://doi.org/10.1681/ASN.2015111285 |
[20] | Kim, S., Goel, R., Kumar, A., et al. (2018) Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Patients with High Blood Pressure. Clinical Science, 132, 701-718. https://doi.org/10.1042/CS20180087 |
[21] | Santisteban, M.M., et al. (2017) Hyperten-sion-Linked Pathophysiological Alterations in the Gut. Circulation Research, 120, 312-323. |
[22] | Jaworska, K., Huc, T., Samborowska, E., Dobrowolski, L., Bielinska, K., Gawlak, M. and Ufnal, M. (2017) Hypertension in Rats Is Associated with an Increased Permeability of the Colon to TMA, a Gut Bacteria Metabolite. PLOS ONE, 12, E0189310. https://doi.org/10.1371/journal.pone.0189310 |
[23] | Mushtaq, N., Hussain, S., Zhang, S., Yuan, L., Li, H., Ullah, S., Wang, Y. and Xu, J. (2019) Molecular Characterization of Alterations in the Intestinal Microbiota of Patients with Grade 3 Hypertension. International Journal of Molecular Medicine, 44, 513-522. https://doi.org/10.3892/ijmm.2019.4235 |
[24] | Yang, T., Santisteban, M.M., Rodriguez, V., et al. (2015) Gut Dysbiosis Is Linked to Hypertension. Hypertension, 65, 1331-1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315 |
[25] | Wilck, N., Matus, M.G., Kearney, S.M., et al. (2017) Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease. Nature, 551, 585-589. https://doi.org/10.1038/nature24628 |
[26] | Marques, F.Z., et al. (2017) High-Fiber Diet and Acetate Supple-mentation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hyper-tensive Mice. Circulation, 135, 964-977. |
[27] | Huart, J., et al. (2019) Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ upon 24-Hour Blood Pressure Levels in Men. Hypertension, 74, 1005-1013. |
[28] | Bartolomaeus, H., Balogh, A., Yakoub, M., et al. (2019) Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation, 139, 1407-1421. https://doi.org/10.1161/CIRCULATIONAHA.118.036652 |
[29] | Poul, E.L., Loison, C., Struyf, S., et al. (2003) Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 278, 25481-25489.
https://doi.org/10.1074/jbc.M301403200 |
[30] | Felizardo, R.J.F., et al. (2019) Gut Microbial Metabolite Bu-tyrate Protects against Proteinuric Kidney Disease through Epigenetic- and GPR109a-Mediated Mechanisms. The FASEB Journal, 33, 11894-11908.
https://doi.org/10.1096/fj.201901080R |
[31] | Pluznick, J. (2014) A Novel SCFA Receptor, the Microbiota, and Blood Pressure Regulation. Gut Microbes, 5, 202-207. https://doi.org/10.4161/gmic.27492 |
[32] | Sun, M., Wu, W., Chen, L., et al. (2018) Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Production to Maintain Intestinal Homeostasis. Nature Communications, 9, Article No. 3555.
https://doi.org/10.1038/s41467-018-05901-2 |
[33] | Bao, N., Chen, F. and Dai, D. (2020) The Regulation of Host Intestinal Microbiota by Polyphenols in the Development and Prevention of Chronic Kidney Disease. Fron-tiers in Immunology, 10, Article No. 2981.
https://doi.org/10.3389/fimmu.2019.02981 |
[34] | Zhong, W., Gong, J., Su, Q., Farag, M.A., Simal-Gandara, J., Wang, H. and Cao, H. (2023) Dietary Polyphenols Ameliorate Inflammatory Bowel Diseases: Advances and Future Perspectives to Maximize Their Nutraceutical Applications. Phytochemistry Reviews. https://doi.org/10.1007/s11101-023-09866-z |
[35] | He, Z., Deng, N., Zheng, B., Gu, Y., Chen, J., Li, T., Liu, R.H., Yuan, L. and Li, W. (2023) Apple Peel Polyphenol Alleviates Antibiotic-Induced Intestinal Dysbiosis by Modulating Tight Junction Proteins, the TLR4/NF-κB Pathway and Intestinal Flora. Food & Function, 14, 6678-6689. https://doi.org/10.1039/D3FO01358H |
[36] | Aprikian, O., Duclos, V., Besson, C., Manach, C., Morand, C., Rémésy, C., Demigné, C., Guyot, S. and Bernalier, A. (2003) Apple Pectin and a Polyphenol-Rich Apple Concentrate Are More Effective Together than Separately on Cecal Fermentations and Plasma Lipids in Rats. The Journal of Nutrition, 133, 1860-1865.
https://doi.org/10.1093/jn/133.6.1860 |
[37] | Tsao, R. (2010) Chemistry and Biochemistry of Dietary Poly-phenols. Nutrients, 2, 1231-1246.
https://doi.org/10.3390/nu2121231 |
[38] | Yi, J., Li, S., Wang, C., Cao, N., Qu, H., Cheng, C., Wang, Z., Wang, L. and Zhou, L. (2019) Potential Applications of Polyphenols on Main NcRNAs Regulations as Novel Therapeutic Strategy for Cancer. Biomedicine & Pharmacotherapy, 113, Article ID: 108703. https://doi.org/10.1016/j.biopha.2019.108703 |
[39] | Hemati, N., Asis, M., Moradi, S., Mollica, A., Stefanucci, A., Nikfar, S., Mohammadi, E., Farzaei, M.H. and Abdollahi, M. (2020) Effects of Genistein on Blood Pressure: A Systematic Review and Meta-Analysis. Food Research International, 128, Article ID: 108764. https://doi.org/10.1016/j.foodres.2019.108764 |
[40] | Mohammadi, M., Ramezani-Jolfaie, N., Lorzadeh, E., Khoshbakht, Y. and Salehi-Abargouei, A. (2019) Hesperidin, a Major Flavonoid in Orange Juice, Might Not Affect Lipid Profile and Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Phytotherapy Research, 33, 534-545.
https://doi.org/10.1002/ptr.6264 |
[41] | Liang, Y., et al. (2016) Beneficial Effects of Grape Seed Proanthocya-nidin Extract on Arterial Remodeling in Spontaneously Hypertensive Rats via Protecting against Oxidative Stress. Molecular Medicine Reports, 14, 3711-3718.
https://www.spandidos-publications.com/mmr/14/4/3711 https://doi.org/10.3892/mmr.2016.5699 |
[42] | Yamagata, K. (2019) Polyphenols Regulate Endothelial Func-tions and Reduce the Risk of Cardiovascular Disease. Current Pharmaceutical Design, 25, 2443-2458. https://doi.org/10.2174/1381612825666190722100504 |
[43] | Mozos, I., Flangea, C., Vlad, D.C., Gug, C., Mozos, C., Stoian, D., Luca, C.T., Horbańczuk, J.O., Horbańczuk, O.K. and Atanasov, A.G. (2021) Effects of Anthocyanins on Vascular Health. Biomolecules, 11, Article No. 811.
https://doi.org/10.3390/biom11060811 |
[44] | Silva, H. and Lopes, N.M.F. (2020) Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Frontiers in Physiology, 11, Article ID: 595516. https://doi.org/10.3389/fphys.2020.595516 |
[45] | Balasuriya, N., Rupasinghe, H.P.V., Sweeney, M., McCarron, S. and Gottschall-Pass, K. (2015) Antihypertensive Effects of Apple Peel Extract on Spontaneously Hypertensive Rats. Pharmacologia, 6, 371-376.
https://doi.org/10.5567/pharmacologia.2015.371.376 |
[46] | Zhu, X., Xu, G., Jin, W., Gu, Y., Huang, X. and Ge, L. (2021) Apple or Apple Polyphenol Consumption Improves Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis. RCM, 22, 835-843.
https://doi.org/10.31083/j.rcm2203089 |
[47] | Saarenhovi, M., Salo, P., Scheinin, M., et al. (2017) The Effect of an Apple Polyphenol Extract Rich in Epicatechin and Flavan-3-Ol Oligomers on Brachial Artery Flow-Mediated Vasodilatory Function in Volunteers with Elevated Blood Pressure. Nutrition Journal, 16, Article No. 73. https://doi.org/10.1186/s12937-017-0291-0 |
[48] | Boyer, J. and Liu, R.H. (2004) Apple Phytochemicals and Their Health Benefits. Nutrition Journal, 3, Article No. 5.
https://doi.org/10.1186/1475-2891-3-5 |