|
支气管肺发育不良相关的免疫因素研究概况
|
Abstract:
近年来,由于早产儿支持和管理技术的进步,早产儿存活率日渐上升,支气管肺发育不良(Bronchopulmonary dysplasia, BPD)的发病率也在不断升高。此疾病是长期氧依赖的慢性疾病,部分患儿的肺功能损伤可持续至成年,这给社会及家庭带来了沉重的经济医疗负担。而BPD的发病机制复杂,至今仍未完全清楚,随着研究的深入,免疫机制在其中的重要作用被逐渐挖掘,且BPD早期的免疫失调导致后期反复呼吸道感染,严重影响患儿生活质量。然而目前关于BPD相关炎症机制及高氧损伤研究逐渐深入,但关于免疫在BPD中作用的相关研究尚处于起步阶段,本文就免疫因素在支气管肺发育不良发生发展中的相关研究作简要概述,为进一步寻找防治BPD的免疫靶点提供依据。
In recent years, the incidence of bronchopulmonary dysplasia (BPD) has been increasing due to advances in preterm infant support and management techniques and the increasing survival rate of preterm infants. BPD is a chronic disease with long-term oxygen dependence, and the impairment of lung function in some children may last until adulthood, which brings a heavy economic and medical burden to society and families. The pathogenesis of BPD is complex and still not fully understood. With the deepening of research, the important role of immune mech-anism has been gradually explored, and the immune dysregulation in the early stage of BPD leads to recurrent respiratory infections in the later stage, which seriously affects the quality of life of the children. However, while research on the inflammatory mechanism and hyperoxia injury associated with BPD is gradually deepening, research on the role of immunity in BPD is still in its infancy. This article provides a brief overview of the research on the role of immunity in the development of bronchopulmonary dysplasia, which will provide a basis for further searching for immune targets to prevent and treat BPD.
[1] | Northway, W.H.J., Rosan, R.C. and Porter, D.Y. (1967) Pulmonary Disease Following Respirator Therapy of Hy-aline-Membrane Disease—Bronchopulmonary Dysplasia. The New England Journal of Medicine, 276, 357-368.
https://doi.org/10.1056/NEJM196702162760701 |
[2] | Abman, S.H., Bancalari, E. and Jobe, A. (2017) The Evolution of Bronchopulmonary Dysplasia after 50 Years. American Journal of Respiratory and Critical Care Medicine, 195, 421-424. https://doi.org/10.1164/rccm.201611-2386ED |
[3] | Bonadies, L., Zaramella, P., Porzionato, A., et al. (2020) Present and Future of Bronchopulmonary Dysplasia. Journal of Clinical Medicine, 9, Article 1539. https://doi.org/10.3390/jcm9051539 |
[4] | Hwang, J.S. and Rehan, V.K. (2018) Recent Advances in Bronchopulmonary Dysplasia: Pathophysiology, Prevention, and Treatment. Lung, 196, 129-138. https://doi.org/10.1007/s00408-018-0084-z |
[5] | Lucia, J., Smith Karen, O., McKay Peter, P., Van Asperen, P.P., et al. (2010) Normal Development of the Lung and Premature Birth. Paediatric Respiratory Reviews, 11, 135-142. https://doi.org/10.1016/j.prrv.2009.12.006 |
[6] | Parad, R.B., Davis, J.M., Lo, J., et al. (2015) Pre-diction of Respiratory Outcome in Extremely Low Gestational Age Infants. Neonatology, 107, 241-248. https://doi.org/10.1159/000369878 |
[7] | Shrestha, D., Ye, G.X., Stabley, D., et al. (2021) Pulmonary Immune Cell Transcriptome Changes in Double-Hit Model of BPD Induced by Chorioamnionitis and Postnatal Hyperoxia. Pediatric Research, 90, 565-575.
https://doi.org/10.1038/s41390-020-01319-z |
[8] | Zhou, D., Shi, F., Xiong, Y., et al. (2019) Increased Serum Th2 Chemokine Levels Are Associated with Bronchopulmonary Dysplasia in Premature Infants. European Journal of Pediatrics, 178, 81-87.
https://doi.org/10.1007/s00431-018-3266-z |
[9] | Ambalavanan, N., Carlo, W.A., D’Angio, C.T., et al. (2009) Cytokines Associated with Bronchopulmo Nary Dysplasia or Death in Extremely Low Birth Weight Infants. Pedi-atrics, 123, 1132-1140. https://doi.org/10.1542/peds.2008-0526 |
[10] | Ambalavanan, N., Van Meurs, K.P., Perritt, R., et al. (2008) Predictors of Death or Bronchopulmonary Dysplasia in Preterm Infant with Respiratory Failure. Journal of Perinatology, 28, 420-426. https://doi.org/10.1038/jp.2008.18 |
[11] | Revhaug, C., Bik-Multanowski, M., Zasada, M., et al. (2019) Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Neonatology, 116, 269-277.
https://doi.org/10.1159/000501461 |
[12] | Kumar, V.H.S., Wang, H.M. and Nielsen, L. (2018) Adaptive Im-mune Responses Are Altered in Adult Mice Following Neonatal Hyperoxia. Physiological Reports, 6, e13577. https://doi.org/10.14814/phy2.13577 |
[13] | Cai, Y., Ma, F., Qu, L.H., et al. (2020) Weighted Gene Co-Expression Network Analysis of Key Biomarkers Associated with Bronchopulmonary Dysplasia. Frontiers in Genetics, 11, Article 539292.
https://doi.org/10.3389/fgene.2020.539292 |
[14] | Rosen, D., Lee, J., Cuttitta, F., et al. (2006) Accelearted Thymic Maturation and Autorecative T Cells in Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 174, 75-83.
https://doi.org/10.1164/rccm.200511-1784OC |
[15] | Arora, S., Dev, K., Agarwal, B., et al. (2018) Macrophages: Their Role, Activation and Polarization in Pulmonary Diseases. Immunobiology, 223, 383-396. https://doi.org/10.1016/j.imbio.2017.11.001 |
[16] | Dong, P., Ma, L., Liu, L., et al. (2016) CD86+/CD206+, Diametrically Polarized Tumor-Associated Macrophages, Predict Hepatocellular Carcinoma Patient Prognosis. In-ternational Journal of Molecular Sciences, 17, Article 320.
https://doi.org/10.3390/ijms17030320 |
[17] | Cheon, I.S., Son, Y, M., Jiang, L., et al. (2018) Neonatal Hy-peroxia Promotes Asthma-Like Features through IL-33—Dependent ILC2 Responses. Journal of Allergy and Clinical Immunology, 142, 1100-1112.
https://doi.org/10.1016/j.jaci.2017.11.025 |
[18] | Hirani, D., Alvira, C.M., Danopoulos, S., et al. (2022) Mac-rophage-Derived IL-6 Trans-Signalling as a Novel Target in the Pathogenesis of Bronchopulmonary Dysplasia. European Respiratory Journal, 59, Article ID: 2002248.
https://doi.org/10.1183/13993003.02248-2020 |
[19] | Zou, X.L., Chen, Z.G., Zhang, T.T., et al. (2018) Th17/Treg Homeostasis, But Not Th1/Th2 Homeostasis, Is Implicated in Exacerbation of Human Bronchial Asthma. Therapeutics and Clinical Risk Management, 14, 1627-1636.
https://doi.org/10.2147/TCRM.S172262 |
[20] | Zhao, P., Li, J., Tian, Y., et al. (2018) Restoring Th17/Treg Balance via Modulation of STAT3 and STAT5 Activation Contributes to the Amelioration of Chronic Obstructive Pulmonary Disease by Bufei Yishen Formula. Journal of Ethnopharmacology, 217, 152-162. https://doi.org/10.1016/j.jep.2018.02.023 |
[21] | Wu, H.X., Wang, K., Li, G.X., et al. (2016) Effects of Transcutaneous Acupoint Electrical Stimulation on the Imbalance of Th1, Th2, Th17 and Treg Cells Following Thoracotomy of Patients with Lung Cancer. Experimental and Therapeutic Medicine, 11, 495-502. https://doi.org/10.3892/etm.2015.2913 |
[22] | Qu, X.Y., Yi, X., Zhong, H.Y., et al. (2023) Effect and Mecha-nism of Imbalance via Th9 Cells and Th17/Treg Cells in Inflammatory and Fibrotic Phases of Pulmonary Fibrosis in Mice. Biotechnology and Genetic Engineering Reviews.
https://doi.org/10.1080/02648725.2023.2203002 |
[23] | Zhu, Y., Mi, L.L., Lu, H.Y., et al. (2023) ILC2 Regu-lates Hyperoxia-Induced Lung Injury via an Enhanced Th17 Cell Response in the BPD Mouse Model. BMC Pul-monary Medicine, 23, Article No. 188.
https://doi.org/10.1186/s12890-023-02474-9 |
[24] | Pagel, J., Twisselmann, N., Rausch, T.K., et al. (2020) In-creased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Infants. Frontiers in Immunology, 11, Article 565257.
https://doi.org/10.3389/fimmu.2020.565257 |
[25] | Wang, Y.J., Zhang, X.L., Liu, J.X., et al. (2021) The As-sociation of γδ-T Cells with Bronchopulmonary Dysplasia in Premature Infants. Human Immunology, 82, 54-59. https://doi.org/10.1016/j.humimm.2020.11.002 |
[26] | Angusamy, S., Mansour, T., Abdulmageed, M., et al. (2018) Altered Thymocyte and T Cell Development in Neonatal Mice with Hyperoxia-Induced Lung Injury. Journal of Perinatal Medicine, 46, 441-449.
https://doi.org/10.1515/jpm-2016-0234 |
[27] | 张丹, 于晓岩, 富建华. 转化生长因子-β1诱导新生大鼠肺成纤维细胞增殖的细胞周期调控研究[J]. 中华实用儿科临床杂志, 2018, 33(14): 1102-1106. |
[28] | Moreau, J.M., Velegraki, M., Bolyard, C., et al. (2022) Transforming Growth Factor-β1 in Regulatory T Cell Biology. Science Immunology, 7, eabi4613. https://doi.org/10.1126/sciimmunol.abi4613 |
[29] | 林晴晴, 谭卉晗, 吴永芳, 等. 脐血TGF-β1、Treg细胞数量水平对早产儿支气管肺发育不良的预测价值[J]. 分子诊断与治疗杂志, 2020, 12(8): 1052-1055. |
[30] | 薛立军, 杜桂莲, 李思涛, 等. 脐血调节性T细胞检测在早产儿支气管肺发育不良中的预测价值[J]. 中华新生儿科杂志(中英文), 2019, 34(5): 353-357. |
[31] | Halliday, H.L. (2008) Surfactants: Past, Present and Future. Journal of Perinatology, 28, S47-S56.
https://doi.org/10.1038/jp.2008.50 |
[32] | Awasthi, S., Madhusoodhanan, R. and Wolf, R. (2011) Surfactant Protein-A and Toll-Like Receptor-4 Modulate Immune Functions of Preterm Baboon Lung Dendritic Cell Precursor Cells. Cellular Immunology, 268, 87-96.
https://doi.org/10.1016/j.cellimm.2011.02.009 |
[33] | Wright, J.R. (2005) Immunoregulatory Functions of Surfactant Proteins. Nature Reviews Immunology, 5, 58-68.
https://doi.org/10.1038/nri1528 |
[34] | Kunzmann, S., Wright, J.R., Steinhilber, W., et al. (2006) TGF-β1 in SP-A Preparations Influence Immune Suppressive Properties of SP-A on Human CD4+ T Lymphocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 291, L747-L756. https://doi.org/10.1152/ajplung.00401.2005 |
[35] | Liu, D.Y., Wu, J., Zhang, X.Y. and Feng, Z.C. (2010) Ex-pression of IL-8, SP-A and TGF-β1 Inbronchoalveolar Lavage Fluid of Neonates with Bronchopulmonary Dys-plasia. Chinese Journal of Contemporary Pediatrics, 12, 444-446. |
[36] | Bersani, I., Speer, C.P. and Kunzmann, S. (2012) Surfactant Proteins A and D in Pulmonary Diseases of Preterm Infants. Expert Review of Anti-infective Therapy, 10, 573-584. https://doi.org/10.1586/eri.12.34 |
[37] | Garg, B.D., Bansal, A. and Kabran, S. (2019) Role of Vitamin A Supplementation in Prevention of Bronchopulmonary Dysplasia in Extremely Low Birthweight Neonates: A Systematic Review of Randomized Trials. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 2608-2615. https://doi.org/10.1080/14767058.2018.1441282 |
[38] | Huang, L., Zhu, D.Q. and Pang G.F., (2021) The Effects of Early Vitamin A Supplementation on the Prevention and Treatment of Bronchopulmonary Dysplasia in Premature Infants: A Systematic Review and Meta-Analysis. Translational Pediatrics, 10, 3218-3229. https://doi.org/10.21037/tp-21-496 |
[39] | Rakshasbhuvankar, A.A., Simmer, K., Patole, S.K., et al. (2021) Enteral Vitamin A for Reducing Severity of Bronchopulmonary Dysplasia: A Randomized Trial. Pediatrics, 147, e2020009985.
https://doi.org/10.1542/peds.2020-009985 |
[40] | Muyayalo, K.P., Huang, X.B., Qian, Z., et al. (2019) Low Circulating Levels of Vitamin D May Contribute to the Occurrence of Preeclampsia through Deregulation of Treg/Th17 Cell Ratio. American Journal of Reproductive Immunology, 82, e13168. https://doi.org/10.1111/aji.13168 |
[41] | Mao, X.N., Qiu, J., Zhao, L., et al. (2018) Vitamin D and IL-10 Defi-ciency in Preterm Neonates with Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 6, Article 246. https://doi.org/10.3389/fped.2018.00246 |
[42] | Chen, Y., Li, Q., Liu, Y., et al. (2015) Attenuation of Hy-peroxiainduced Lung Injury in Neonatal Rats by 1α, 25-Dihydroxyvitamin D3. Experimental Lung Research, 41, 344-352. https://doi.org/10.3109/01902148.2015.1039668 |
[43] | Fort, P., Salas, A.A., Nicola, T., et al. (2016) A Comparison of 3 Vitamin D Dosing Regimens in Extremely Preterm Infants: A Randomized Controlled Trial. The Journal of Pediatrics, 174, 132-138.E1.
https://doi.org/10.1016/j.jpeds.2016.03.028 |
[44] | Olin, A., Henckel, E., Chen, Y., et al. (2018) Stereotypic Immune System Development in Newborn Children. Cell, 174, 1277-1292.E14. https://doi.org/10.1016/j.cell.2018.06.045 |
[45] | Belizario, J.E., Faintuch, J. and Garay-Malpartida, M. (2018) Gut Microbiome Dysbiosis Andimmunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, Article ID: 2037838.
https://doi.org/10.1155/2018/2037838 |
[46] | Shukla, S.D., Budden, K.F., Neal, R. and Hansbro, P.M. (2017) Microbiome Effects on Immunity, Health and Disease in the Lung. Clinical & Translational Immunology, 6, e133. https://doi.org/10.1038/cti.2017.6 |
[47] | Yang, K., He, S.S. and Dong, W.B. (2021) Gut Microbiota and Bronchopulmonary Dysplasia. Pediatric Pulmonology, 56, 2460-2470. https://doi.org/10.1002/ppul.25508 |
[48] | Yang, K. and Dong, W. (2020) Perspectives on Probiotics and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 8, Article 570247. https://doi.org/10.3389/fped.2020.570247 |
[49] | Pammi, M., Vivek Lal, C., Wagner, B.D., et al. (2019) Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. The Journal of Pediatrics, 204, 126-133.E2.
https://doi.org/10.1016/j.jpeds.2018.08.042 |
[50] | Willis, K.A., Siefker, D.T., Aziz, M.M., et al. (2020) Peri-natal Maternal Antibiotic Exposure Augments Lung Injury in Offspring in Experimental Bronchopulmonary Dys-plasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 318, L407-L418. https://doi.org/10.1152/ajplung.00561.2018 |
[51] | Witkowski, S.M., De Castro, E.M., Nagashima, S., et al. (2020) Analysis of Interleukins 6, 8, 10 and 17 in the Lungs of Premature Neonates with Bronchopulmonary Dysplasia. Cytokine, 131, Article ID: 155118.
https://doi.org/10.1016/j.cyto.2020.155118 |