|
Pharmacy Information 2024
抗体偶联核酸药物的研究进展
|
Abstract:
核酸药物具有不可替代优越性和应用局限性,基于抗体的递送系统已成为一种有效的治疗策略,因此将抗体和寡核苷酸结合以有效融合前者的组织特异性优势和后者的靶点特异性优势已成为新的发展趋势。本文旨在论述制备抗体偶联核酸药物的关键技术及各自优缺点,为抗体偶联核酸药物的发展提供研究思路。
Nucleic acid drugs have irreplaceable superiority and application limitations, and antibody has become an effective therapeutic strategy as the basis of delivery system. Therefore, the combination of antibody and oligonucleotide to effectively fuse the tissue-specific advantages of the former and the target-specific advantages of the latter has become a new development trend. This review aims to discuss the key techniques of preparing antibody-oligonucleotide conjugates, their benefits and drawbacks, and provide research ideas for the development of antibody-oligonucleotide conjugates.
[1] | Lchelt, U. and Wagner, E. (2015) Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 115, 11043-11078. https://doi.org/10.1021/cr5006793 |
[2] | Kurreck, J. (2003) Antisense Tech-nologies. Improvement through Novel Chemical Modifications. European Journal of Biochemistry, 270, 1628-1644. https://doi.org/10.1046/j.1432-1033.2003.03555.x |
[3] | Moreno, P.M.D. and Pêgo, A.P. (2014) Therapeutic Anti-sense Oligonucleotides against Cancer: Hurdling to the Clinic. Frontiers in Chemistry, 2, Article No. 87. https://doi.org/10.3389/fchem.2014.00087 |
[4] | Hu, B., Zhong, L., Weng, Y., et al. (2020) Therapeutic SiRNA: State of the Art. Signal Transduction and Targeted Therapy, 5, Article No. 101. https://doi.org/10.1038/s41392-020-0207-x |
[5] | Roberts, T.C., Langer, R. and Wood, M.J.A. (2020) Advances in Oligonucleotide Drug Delivery. Nature Reviews Drug Discovery, 19, 673-694. https://doi.org/10.1038/s41573-020-0075-7 |
[6] | Chen, D., Liu, X., Lu, X., et al. (2023) Nanoparticle Drug Deliv-ery Systems for Synergistic Delivery of Tumor Therapy. Frontiers in Pharmacology, 16, Article ID: 1111991. https://doi.org/10.3389/fphar.2023.1111991 |
[7] | Ulldemolins, A., Seras-Franzoso, J., Andrade, F., et al. (2021) Perspectives of Nano-Carrier Drug Delivery Systems to Overcome Cancer Drug Resistance in the Clinics. Cancer Drug Resistance, 4, 44-68.
https://doi.org/10.20517/cdr.2020.59 |
[8] | Wei, G., Wang, Y., Yang, G., et al. (2021) Recent Progress in Nano-medicine for Enhanced Cancer Chemotherapy. Theranostics, 11, 6370-6392. https://doi.org/10.7150/thno.57828 |
[9] | Sheoran, S., Arora, S., Samsonraj, R., et al. (2022) Lipid-Based Nanopar-ticles for Treatment of Cancer. Heliyon, 8, E09403. https://doi.org/10.1016/j.heliyon.2022.e09403 |
[10] | Setten, R.L., Rossi, J.J. and Han, S.P. (2019) The Current State and Future Directions of RNAi-Based Therapeutics. Nature Reviews Drug Discovery, 18, 421-446. https://doi.org/10.1038/s41573-019-0017-4 |
[11] | Chen, Z., Kankala, R.K., Yang, Z., et al. (2022) Antibody-Based Drug Delivery Systems for Cancer Therapy: Mechanisms, Challenges, and Prospects. Theranostics, 12, 3719-3746. https://doi.org/10.7150/thno.72594 |
[12] | Beck, A., Goetsch, L., Dumontet, C., et al. (2017) Strategies and Challenges for the Next Generation of Antibody-Drug Conjugates. Nature Reviews Drug Discov-ery, 16, 315-337. https://doi.org/10.1038/nrd.2016.268 |
[13] | Dugal-Tessier, J., Thirumalairajan, S. and Jain, N. (2021) Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. Journal of Clinical Medicine, 10, Article No. 838. https://doi.org/10.3390/jcm10040838 |
[14] | Mullard, A. (2022) Antibody-Oligonucleotide Conju-gates Enter the Clinic. Nature Reviews Drug Discovery, 21, 6-8.
https://doi.org/10.1038/d41573-021-00213-5 |
[15] | Maiti, R., Patel, B., Patel, N., et al. (2023) Antibody Drug Con-jugates as Targeted Cancer Therapy: Past Development, Present Challenges and Future Opportunities. Archives of Phar-macal Research, 46, 361-388.
https://doi.org/10.1007/s12272-023-01447-0 |
[16] | Tang, H., Liu, Y., Yu, Z., et al. (2019) The Analysis of Key Factors Related to ADCs Structural Design. Frontiers in Pharmacology, 10, Article No. 373. https://doi.org/10.3389/fphar.2019.00373 |
[17] | Dyne Therapeutics, Inc. (2023) Muscle Targeting Complexes and Uses Thereof for Treating Facioscapulohumeral Muscular Dystrophy. US, US11638761B2. |
[18] | van Geel, R., Wijdeven, M.A., Heesbeen, R., et al. (2015) Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjugate Chemistry, 26, 2233-2242. https://doi.org/10.1021/acs.bioconjchem.5b00224 |
[19] | Lyon, R.P., Bovee, T.D., Do-ronina, S.O., et al. (2015) Reducing Hydrophobicity of Homogeneous Antibody-Drug Conjugates Improves Pharmaco-kinetics and Therapeutic Index. Nature Biotechnology, 33, 733-735.
https://doi.org/10.1038/nbt.3212 |
[20] | Chau, C.H., Steeg, P.S. and Figg, W.D. (2019) Antibody-Drug Conjugates for Cancer. The Lancet, 394, 793-804.
https://doi.org/10.1016/S0140-6736(19)31774-X |
[21] | Tsuchikama, K. and An, Z. (2018) Antibody-Drug Conju-gates: Recent Advances in Conjugation and Linker Chemistries. Protein & Cell, 9, 33-46. https://doi.org/10.1007/s13238-016-0323-0 |
[22] | Drenkard, D., Becke, F., Langstein, J., et al. (2007) CD137 Is Expressed on Blood Vessel Walls at Sites of Infammation and Enhances Monocyte Migratory Activity. FASEB Journal, 21, 456-463. https://doi.org/10.1096/fj.05-4739com |
[23] | Jain, N., Smith, S.W., Ghone, S., et al. (2015) Current ADC Linker Chemistry. Pharmaceutical Research, 32, 3526-3540. https://doi.org/10.1007/s11095-015-1657-7 |
[24] | Zacharias, N., Podust, V.N., Kajihara, K.K., et al. (2022) A Ho-mogeneous High-DAR Antibody-Drug Conjugate Platform Combining THIOMAB Antibodies and XTEN Polypeptides. Chemical Science, 13, 3147-3160.
https://doi.org/10.1039/D1SC05243H |
[25] | Kostova, V., et al. (2021) The Chemistry Behind ADCs. Pharmaceuti-cals, 14, 442-488.
https://doi.org/10.3390/ph14050442 |
[26] | Winkler, J. (2013) Oligonucleotide Conjugates for Therapeutic Applica-tions. Therapeutic Delivery, 4, 791-809.
https://doi.org/10.4155/tde.13.47 |
[27] | Carter, P.J. and Senter, P.D. (2013) Antibody-Drug Conjugates in Cancer Therapy. Annual Review of Medicine, 64, 15-29. https://doi.org/10.1146/annurev-med-050311-201823 |
[28] | Roberts, T.C., Langer, R., et al. (2020) Advances in Oligonucleotide Drug Delivery. Nature Reviews Drug Discovery, 19, 673-694. https://doi.org/10.1038/s41573-020-0075-7 |
[29] | Matsuda, Y. and Mendelsohn, B.A. (2021) An Over-view of Process Development for Antibody-Drug Conjugates Produced by Chemical Conjugation Technology. Expert Opinion on Biological Therapy, 21, 963-975.
https://doi.org/10.1080/14712598.2021.1846714 |
[30] | Avidity Biosciences LLC (2018) Nucleic Acid-Polypeptide Compositions and Uses Thereof. AU, AU2017240799A1. |
[31] | Arnold, A.E., Malek-Adamian, E., Le, P.U., et al. (2018) Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. Molecu-lar Therapy—Nucleic Acids, 11, 518-527.
https://doi.org/10.1016/j.omtn.2018.04.004 |
[32] | Tai, W., Li, J., Corey, E., et al. (2018) A Ribonucleoprotein Oc-tamer for Targeted SiRNA Delivery (Vol 2, Pg 326, 2018). Nature Biomedical Engineering, 2, 326-337. https://doi.org/10.1038/s41551-018-0214-1 |
[33] | Lu, H., Wang, D., Kazane, S., et al. (2013) Site-Specific Anti-body-Polymer Conjugates for SiRNA Delivery. Journal of the American Chemical Society, 135, 13885-13891. https://doi.org/10.1021/ja4059525 |
[34] | Scheicher, B., Schachner-Nedherer, A.L. and Zimmer, A. (2015) Prota-mine-Oligonucleotide-Nanoparticles: Recent Advances in Drug Delivery and Drug Targeting. European Journal of Pharmaceutical Sciences, 75, 54-59.
https://doi.org/10.1016/j.ejps.2015.04.009 |
[35] | Ruseska, I., Fresacher, K., Petschacher, C., et al. (2021) Use of Protamine in Nanopharmaceuticals—A Review. Nanomaterials (Basel), 11, 1508-1550. https://doi.org/10.3390/nano11061508 |
[36] | Tang, B., Zaro, J.L., Shen, Y., et al. (2018) Acid-Sensitive Hybrid Polymeric Micelles Containing a Reversibly Activatable Cell-Penetrating Peptide for Tumor-Specific Cytoplasm Target-ing. Journal of Controlled Release, 279, 147-156. https://doi.org/10.1016/j.jconrel.2018.04.016 |
[37] | Zhang, H., Mao, Y., Zhang, F., et al. (2014) The Inhibitory Effect of a New ScFv/TP Protein as SiRNA Delivery System to Target HWAPL in Cervical Carcinoma. Molecular and Cellular Biochemistry, 391, 77-84.
https://doi.org/10.1007/s11010-014-1989-3 |
[38] | Bumer, N., Scheller, A., Wittmann, L., et al. (2022) Electrostatic Anti-CD33-Antibody-Protamine Nanocarriers as Platform for a Targeted Treatment of Acute Myeloid Leukemia. Journal of Hematology & Oncology, 15, 171-197.
https://doi.org/10.1186/s13045-022-01390-5 |
[39] | Qian, L., Lin, X., Gao, X., et al. (2023) The Dawn of a New Era: Targeting the “Undruggables” with Antibody-Based Therapeutics. Chemical Reviews, 123, 7782-7853. https://doi.org/10.1021/acs.chemrev.2c00915 |
[40] | Dar, G.H., Gopal, V. and Rao, M. (2015) Confor-mation-Dependent Binding and Tumor-Targeted Delivery of SiRNA by a Designed TRBP2: Affibody Fusion Protein. Nanomedicine Nanotechnology Biology & Medicine, 11, 1455-1466.
https://doi.org/10.1016/j.nano.2015.01.017 |
[41] | Larance, R., Tripti, R., Devesh, R., et al. (2017) In Silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity. Frontiers in Microbiology, 8, 1467-1476.
https://doi.org/10.3389/fmicb.2017.01467 |
[42] | Yang, Y., Zhu, H., Liu, D., et al. (2023) A Versatile Platform for the Tumor-Targeted Intracellular Delivery of Peptides, Proteins, and SiRNA. Advanced Functional Materials, 33, Article ID: 2301011.
https://doi.org/10.1002/adfm.202301011 |
[43] | Dong, Y., Siegwart, D.J. and Anderson, D.G. (2019) Strategies, De-sign, and Chemistry in SiRNA Delivery Systems. Advanced Drug Delivery Reviews, 144, 133-147. https://doi.org/10.1016/j.addr.2019.05.004 |
[44] | Bolcato-Bellemin, A.L., Bonnet, M.E., Creusat, G., et al. (2007) Sticky Overhangs Enhance SiRNA-Mediated Gene Silencing. Proceedings of the National Academy of Sciences of the United States of America, 104, 16050-16055.
https://doi.org/10.1073/pnas.0707831104 |
[45] | Liu, T., Song, P., M?rcher, A., et al. (2019) Selective Delivery of Doxorubicin to EGFR+ Cancer Cells by Cetuximab-DNA Conjugates. Chembiochem, 20, 1014-1018. https://doi.org/10.1002/cbic.201800685 |
[46] | Zhang, J.X., Fang, J.Z., Duan, W., et al. (2018) Predicting DNA Hy-bridization Kinetics from Sequence. Nature Chemistry, 10, 91-98. https://doi.org/10.1038/nchem.2877 |
[47] | Wiener, J., Kokotek, D., Rosowski, S., et al. (2020) Preparation of Single- and Double-Oligonucleotide Antibody Conjugates and Their Application for Protein Analytics. Scientific Reports, 10, 1457-1468.
https://doi.org/10.1038/s41598-020-58238-6 |
[48] | Benizri, S., Gissot, A., Martin, A., et al. (2019) Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjugate Chemistry, 30, 366-383. https://doi.org/10.1021/acs.bioconjchem.8b00761 |
[49] | Sugo, T., Terada, M., Oikawa, T., et al. (2016) Develop-ment of Antibody-SiRNA Conjugate Targeted to Cardiac and Skeletal Muscles. Journal of Controlled Release, 237, 1-13. https://doi.org/10.1016/j.jconrel.2016.06.036 |
[50] | Malecova, B., Burke, R.S., Cochran, M., et al. (2023) Targeted Tissue Delivery of RNA Therapeutics Using Antibody-Oligonucleotide Conjugates (AOCs). Nucleic Acids Research, 51, 5901-5910. https://doi.org/10.1093/nar/gkad415 |
[51] | Scott, C.C., Vacca, F. and Gruenberg, J. (2014) Endosome Maturation, Transport and Functions. Seminars in Cell & Developmental Biology, 31, 2-10. https://doi.org/10.1016/j.semcdb.2014.03.034 |
[52] | Hassler, M.R., Turanov, A.A., Alterman, J.F., et al. (2018) Comparison of Partially and Fully Chemically-Modified SiRNA in Conjugate-Mediated Delivery in Vivo. Nucleic Acids Research, 46, 2185-2196.
https://doi.org/10.1093/nar/gky037 |
[53] | Juliano, R.L. (2018) Intracellular Trafficking and Endosomal Release of Oligonucleotides: What We Know and What We Don’t. Nucleic Acid Therapeutics, 28, 166-177. https://doi.org/10.1089/nat.2018.0727 |
[54] | Dowdy, S.F., Setten, R.L., Cui, X.S., et al. (2022) Delivery of RNA Therapeutics: The Great Endosomal Escape! Nucleic Acid Therapeutics, 32, 361-368. https://doi.org/10.1089/nat.2022.0004 |
[55] | Mangla, P., Vicentini, Q. and Biscans, A. (2023) Therapeutic Oligonu-cleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells, 12, 2253-2291. https://doi.org/10.3390/cells12182253 |