|
血清AFP升高型胃癌的临床病理特征性分析
|
Abstract:
胃癌(GC)是全球最常见的恶性肿瘤之一,也是癌症死亡的第三大常见原因。而AFP阳性GC是一种相对罕见的胃恶性肿瘤类型,最初由Bourreille等人于1970年报道。目前得到证实的是,与普通型GC相比,AFP阳性GC更具侵袭性,更易发生早期淋巴结转移和远处转移。特别是肝转移的发生率大大增加,预后更差。近年来,AFP阳性GC的治疗逐渐得到重视。本研究旨在分析AFP阳性GC患者的发病机制、病理特征、影响因素及治疗现状与进展,进一步为临床上AFP阳性GC患者的发生做出早发现、早诊断、早治疗,以期降低患者的死亡率。
Gastric cancer (GC) is one of the most common malignant tumors worldwide and the third most common cause of cancer death. AFP positive GC is a relatively rare type of gastricmalignant tumor, initially reported by Bourreille et al. in 1970. Currently, it has been confirmed that compared to the common type of GC, AFP positive GC is more invasive and more prone to early lymph node metasta-sis and distant metastasis. Especially, the incidence of liver metastasis has greatly increased, and the prognosis is worse. In recent years, the treatment of AFP positive GC has gradually received at-tention. The aim of this study is to analyze the pathogenesis, pathological characteristics, influenc-ing factors, treatment status and progress of AFP positive GC patients, and further provide early detection, diagnosis, and treatment for the occurrence of AFP positive GC patients in clinical practice, in order to reduce the mortality rate of patients.
[1] | Vatansever, S., ?zer, M.K. and Erdo?an, E.I. (2022) Prognostic Significance of α-Fetoprotein in Gastric Adenocarcino-ma. Przegl?d Gastroenterologiczny, 17, 35-40. https://doi.org/10.5114/pg.2022.114595 |
[2] | Mei, Y., Li, M., Wen, J., Kong, X. and Li, J. (2023) Single-Cell Characteristics and Malignancy Regulation of Alpha-Fetoprotein-Producing Gastric Cancer. Cancer Medicine, 12, 12018-12033. https://doi.org/10.1002/cam4.5883 |
[3] | Gong, W., Su, Y., Liu, A., et al. (2018) Clinical Characteristics and Treatments of Patients with Alpha-Fetoprotein Producing Gastric Carcinoma. Neoplasma, 65, 326-330. https://doi.org/10.4149/neo_2018_170207N84 |
[4] | Liu, X., Sheng, W. and Wang, Y. (2012) An Analysis of Clinicopathological Features and Prognosis by Comparing Hepatoid Adenocarcinoma of the Stomach with AFP-Producing Gastric Cancer. Journal of Surgical Oncology, 106, 299-303.
https://doi.org/10.1002/jso.23073 |
[5] | Chen, E.-B., Wei, Y.-C., Liu, H.-N., Tang, C., Liu, M.-L., Peng, K. and Liu, T. (2019) Hepatoid Adenocarcinoma of Stomach: Emphasis on the Clinical Relationship with Alpha-Fetoprotein-Positive Gastric Cancer. BioMed Research International, 2019, Article ID: 6710428. https://doi.org/10.1155/2019/6710428 |
[6] | Li, X.-D., Wu, C.-P., Ji, M., Wu, J., Lu, B., Shi, H.-B. and Jiang, J.-T. (2013) Characteristic Analysis of α-Fetoprotein Producing Gastric Carcinoma in China. World Journal of Surgical On-cology. 11, Article No. 246.
https://doi.org/10.1186/1477-7819-11-246 |
[7] | Hirajima, S., Komatsu, S., Ichikawa, D., Kubota, T., Okamoto, K., Shiozaki, A., Fujiwara, H., Konishi, H., Ikoma, H. and Otsuji, E. (2013) Liver Metastasis Is the Only Independent Prognostic Factor in AFP-Producing Gastric Cancer. World Journal of Gastroenterology, 19, 6055-6061. https://doi.org/10.3748/wjg.v19.i36.6055 |
[8] | Asahi, Y., Kamiyama, T., Homma, S., Hatanaka, K.C., Yokoo, H., Nakagawa, T., Kamachi, H., Nakanishi, K., Tahara, M., Kakisaka, T., Wakayama, K., Todo, S. and Taketomi, A. (2015) Resection of Liver Metastasis Derived from Alpha-Fetoprotein-Producing Gastric Cancer-Report of 4 Cases. Interna-tional Cancer Conference Journal, 5, 98-103.
https://doi.org/10.1007/s13691-015-0236-4 |
[9] | Harada, M., Tsujimoto, H., Ichikura, T., Nagata, H., Ito, N., Nomura, S., Horiguchi, H., Yaguchi, Y., Kishi, Y. and Ueno, H. (2019) A Case of a Long-Term Survival Achieved by Surgical Treatment and Chemotherapy for Late Recurrence of AFP-Producing Gastric Cancer. Surgical Case Reports, 5, Article No. 106.
https://doi.org/10.1186/s40792-019-0664-z |
[10] | Fanotto, V., Ongaro, E., Rihawi, K., Avallone, A., Silvestris, N., Fornaro, L., Vasile, E., Antonuzzo, L., Leone, F., Rosati, G., Giuliani, F., Bordonaro, R., Scartozzi, M., De Maglio, G., Negri, F.V., Fasola, G. and Aprile, G. (2016) HER-2 Inhibition in Gastric and Colorectal Cancers: Tangible Achieve-ments, Novel Acquisitions and Future Perspectives. Oncotarget, 7, 69060-69074. https://doi.org/10.18632/oncotarget.11264 |
[11] | Marano, L. and Roviello, F. (2015) The Distinctive Nature of HER2-Positive Gastric Cancers. European Journal of Surgical Oncology, 41, 271-273. https://doi.org/10.1016/j.ejso.2014.12.007 |
[12] | Carlomagno, N., Incollingo, P., Tammaro, V., et al. (2017) Diag-nostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric Cancer. BioMed Research International, 2017, Article ID: 7869802. https://doi.org/10.1155/2017/7869802 |
[13] | Yang, Y.-M., Hong, P., Xu, W.W., He, Q.-Y. and Li, B. (2020) Ad-vances in Targeted Therapy for Esophageal Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 229. https://doi.org/10.1038/s41392-020-00323-3 |
[14] | Van Cutsem, E., Bang, Y.J., Feng-Yi, F., et al. (2015) HER2 Screening Data from ToGA: Targeting HER2 in Gastric and Gastroesophageal Junction Cancer. Gastric Cancer, 18, 476-484. https://doi.org/10.1007/s10120-014-0402-y |
[15] | An, E., Ock, C.-Y., Kim, T.-Y., et al. (2017) Quantita-tive Proteomic Analysis of HER2 Expression in the Selection of Gastric Cancer Patients for Trastuzumab Treatment. An-nals of Oncology, 28, 110-115.
https://doi.org/10.1093/annonc/mdw442 |
[16] | Okines, A.F.C. and Turner, N.C. (2021) Heterogeneous HER2 Am-plification—A New Clinical Category of HER2-Positive Breast Cancer? Cancer Discovery, 11, 2369-2371. https://doi.org/10.1158/2159-8290.CD-21-0936 |
[17] | Dokmanovic, M., King, K.E., Mohan, N., Endo, Y. and Wu, W.J. (2017) Cardiotoxicity of ErbB2-Targeted Therapies and Its Impact on Drug Development, a Spotlight on Trastuzumab. Expert Opinion on Drug Metabolism & Toxicology, 13, 755-766. https://doi.org/10.1080/17425255.2017.1337746 |
[18] | Song, Y., Tong, C., Wang, Y., et al. (2018) Effective and Persistent Antitumor Activity of HER2-Directed CAR-T Cells against Gastric Cancer Cells in vitro and Xenotransplanted Tumors in vivo. Protein & Cell, 9, 867-878.
https://doi.org/10.1007/s13238-017-0384-8 |
[19] | 刘端瑞. 血清AFP阳性胃癌患者的临床病理特征及预后分析[D]: [硕士学位论文]. 济南: 山东大学, 2018. |
[20] | Kamei, S., Kono, K., Amemiya, H., et al. (2003) Evaluation of VEGF and VEGF-C Expression in Gastric Cancer Cells Producing Alpha-Fetoprotein. Journal of Gastroenterology, 38, 540-547. https://doi.org/10.1007/s00535-002-1099-y |
[21] | Jeltsch, M., Kaipainen, A., Joukov, V., et al. (1997) Hyperplasia of Lymphatic Vessels in VEGF-C Transgenic Mice. Science, 276, 1423-1425. https://doi.org/10.1126/science.276.5317.1423 |
[22] | Yonemura, Y., Endo, Y., Fujita, H., et al. (1999) Role of Vas-cular Endothelial Growth Factor C Expression in the Development of Lymph Node Metastasis in Gastric Cancer. Clinical Cancer Research, 5, 1823-1829. |
[23] | Amemiya, H., Kono, K., Mori, Y., et al. (2000) High Frequency of c-Met Ex-pression in Gastric Cancers Producing Alpha-Fetoprotein. Oncology, 59, 145-151. https://doi.org/10.1159/000012152 |
[24] | Matsumoto, K. and Nakamura, T. (1997) Hepatocyte Growth Factor (HGF) as a Tissue Organizer for Organogenesis and Regeneration. Biochemical and Biophysical Research Communications, 239, 639-644.
https://doi.org/10.1006/bbrc.1997.7517 |
[25] | Halaban, R., Rubin, J.S., Funasaka, Y., et al. (1992) Met and Hepatocyte Growth Factor/Scatter Factor Signal Transduction in Normal Melanocytes and Melanoma Cells. Oncogene, 7, 2195-2206. |
[26] | Tajima, H., Matsumoto, K. and Nakamura, T. (1992) Regulation of Cell Growth and Motility by Hepatocyte Growth Factor and Receptor Expression in Various Cell Species. Experimental Cell Research, 202, 423-431.
https://doi.org/10.1016/0014-4827(92)90095-P |
[27] | Matsumoto, K. and Nakamura, T. (1992) Hepatocyte Growth Factor: Molecular Structure, Roles in Liver Regeneration, and Other Biological Functions. Critical Reviews in Oncogene-sis, 3, 27-54. |
[28] | Ponzetto, C., Giordano, S., Peverali, F., et al. (1991) c-Met Is Amplified but Not Mutated in a Cell Line with an Activated Met Tyrosine Kinase. Oncogene, 6, 553-559. |
[29] | Kaji, M., Yonemura, Y., Harada, S., Liu, X., Terada, I. and Yamamoto, H. (1996) Participation of c-Met in the Progression of Human Gastric Cancers: Anti-c-Met Oligonucleotides Inhibit Proliferation or Invasiveness of Gastric Cancer Cells. Cancer Gene Therapy, 3, 393-404. |
[30] | Koide, N., Nishio, A., Igarashi, J., Kajikawa, S., Adachi, W. and Amano, J. (1999) Al-pha-Fetoprotein-Producing Gastric Cancer: Histochemical Analysis of Cell Proliferation, Apoptosis, and Angiogenesis. American Journal of Gastroenterology, 94, 1658-1663. https://doi.org/10.1111/j.1572-0241.1999.01158.x |
[31] | Naraki, T., Kohno, N., Saito, H., et al. (2002) Gam-ma-Carboxyglutamic Acid Content of Hepatocellular Carcinoma-Associated Des-Gamma-Carboxy Prothrombin. Bio-chimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1586, 287-298. https://doi.org/10.1016/S0925-4439(01)00107-7 |
[32] | Inagaki, Y., Tang, W., Xu, H., et al. (2008) Des-Gamma-Carboxyprothrombin: Clinical Effectiveness and Biochemical Importance. Bioscience Trends, 2, 53-60. |
[33] | Widdershoven, J., Van Munster, P., De Abreu, R., et al. (1987) Four Methods Compared for Measuring Des-Car- boxy-Prothrombin (PIVKA-II). Clinical Chemistry, 33, 2074-2078.
https://doi.org/10.1093/clinchem/33.11.2074 |
[34] | Tameda, M., Shiraki, K., Sugimoto, K., et al. (2013) Des-γ-Carboxy Prothrombin Ratio Measured by P-11 and P-16 Antibodies Is a Novel Biomarker for Hepatocellular Car-cinoma. Cancer Science, 104, 725-731.
https://doi.org/10.1111/cas.12149 |
[35] | Field, S.L., Hogg, P.J., Daly, E.B., et al. (1999) Lupus Anticoagulants Form Immune Complexes with Prothrombin and Phospholipid that Can Augment Thrombin Production in Flow. Blood, 94, 3421-3431.
https://doi.org/10.1182/blood.V94.10.3421.422k27_3421_3431 |
[36] | F?rber, P., Brost, I., Adam, R. and Holzapfel, W. (2000) HPLC Based Method for the Measurement of the Reduction of Aflatoxin B1 by Bacterial Cultures Isolated from Different African Foods. Mycotoxin Research, 16, 141.
https://doi.org/10.1007/BF02940021 |
[37] | Deugnier, Y. (2003) Iron and Liver Cancer. Alcohol, 30, 145-150. https://doi.org/10.1016/S0741-8329(03)00129-0 |
[38] | 王琪. 异常凝血酶原对原发性肝癌的诊断价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2019. |
[39] | Oshima, C.T., Iriya, K. and Forones, N.M. (2005) Ki-67 as a Prognostic Marker in Colorectal Cancer but Not in Gastric Cancer. Neoplasma, 52, 420-424. |
[40] | Schlüter, C., Duchrow, M., Wohlenberg, C., Becker, M.H., Key, G., Flad, H.D. and Gerdes, J. (1993) The Cell Proliferation-Associated Antigen of Antibody Ki-67: A Very Large, Ubiquitous Nuclear Protein with Numerous Repeated Elements, Representing a New Kind of Cell Cycle-Maintaining Proteins. Journal of Cell Biology, 123, 513-522.
https://doi.org/10.1083/jcb.123.3.513 |
[41] | Chierico, L., Rizzello, L., Guan, L., Joseph, A.S., Lewis, A. and Battaglia, G. (2017) The Role of the Two Splice Variants and Extranuclear Pathway on Ki-67 Regulation in Non-Cancer and Cancer Cells. PLOS ONE, 12, e0171815.
https://doi.org/10.1371/journal.pone.0171815 |
[42] | Nakano, T., Ohno, T., Ishikawa, H., Suzuki, Y. and Takahashi, T. (2010) Current Advancement in Radiation Therapy for Uterine Cervical Cancer. Journal of Radiation Research, 51, 1-8. https://doi.org/10.1269/jrr.09132 |
[43] | Xu, L., Zhang, S.M., Wang, Y.P., Zhao, F.K., Wu, D.Y. and Yan, X. (1999) Relationship between DNA Ploidy, Expression of Ki-67 Antigen and Gastric Cancer Metastasis. World Journal of Gastroenterology. 5, 10-11.
https://doi.org/10.3748/wjg.v5.i1.10 |
[44] | 辛彦, 吴东英, 赵凤凯, 等. Ki-67抗原表达与胃癌病理生物学行为关系的研究[J]. 中华肿瘤杂志, 1997, 19(5): 382-384. |
[45] | Cullis, C.A. (2002) The Use of DNA Polymorphisms in Genetic Mapping. In: Setlow, J.K., Eds., Genetic Engineering. Genetic Engineering: Principles and Methods, Vol. 24, Springer, Boston, 179-189.
https://doi.org/10.1007/978-1-4615-0721-5_8 |
[46] | Hause, R.J., Pritchard, C.C., Shendure, J. and Salipante, S.J. (2016) Classification and Characterization of Microsatellite Instability across 18 Cancer Types. Nature Medicine, 22, 1342-1350. https://doi.org/10.1038/nm.4191 |
[47] | Choi, Y.Y., Bae, J.M., An, J.Y., et al. (2014) Is Microsatellite Instability a Prognostic Marker in Gastric Cancer?: A Systematic Review with Meta-Analysis. Journal of Surgical On-cology, 110, 129-135.
https://doi.org/10.1002/jso.23618 |
[48] | Kim, C.G., Ahn, J.B., Jung, M., et al. (2016) Effects of Microsatellite Insta-bility on Recurrence Patterns and Outcomes in Colorectal Cancers. British Journal of Cancer, 115, 25-33. https://doi.org/10.1038/bjc.2016.161 |
[49] | Mohan, H.M., Ryan, E., Balasubramanian, I., et al. (2016) Microsatellite Instability Is Associated with Reduced Disease Specific Survival in Stage III Colon Cancer. European Journal of Surgi-cal Oncology, 42, 1680-1686.
https://doi.org/10.1016/j.ejso.2016.05.013 |
[50] | The Cancer Genome Atlas Research Network (2014) Comprehen-sive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480 |
[51] | Cortes-Ciriano, I., Lee, S., Park, W.Y., Kim, T.M. and Park, P.J. (2017) A Molecular Portrait of Microsatellite Instability across Multiple Cancers. Nature Communications, 8, Article No. 15180. https://doi.org/10.1038/ncomms15180 |
[52] | Travaglino, A., Raffone, A., Gencarelli, A., et al. (2020) TCGA Classi-fication of Endometrial Cancer: The Place of Carcinosarcoma. Pathology & Oncology Research, 26, 2067-2073. https://doi.org/10.1007/s12253-020-00829-9 |
[53] | Muro, K., Chung, H.C., Shankaran, V., et al. (2016) Pembroli-zumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. The Lancet Oncology, 17, 717-726.
https://doi.org/10.1016/S1470-2045(16)00175-3 |
[54] | Thiery, J.P., Acloque, H., Huang, R.Y. and Nieto, M.A. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890. https://doi.org/10.1016/j.cell.2009.11.007 |
[55] | Wang, H., Wu, X. and Chen, Y. (2019) Stromal-Immune Score-Based Gene Signature: A Prognosis Stratification Tool in Gastric Cancer. Frontiers in Oncology, 9, Article 1212. https://doi.org/10.3389/fonc.2019.01212 |
[56] | Lamprecht, S., Kaller, M., Schmidt, E.M., et al. (2018) PBX3 Is Part of an EMT Regulatory Network and Indicates Poor Outcome in Colorectal Cancer. Clinical Cancer Research, 24, 1974-1986.
https://doi.org/10.1158/1078-0432.CCR-17-2572 |
[57] | Zhou, S., Wang, X., Ding, J., Yang, H. and Xie, Y. (2022) Increased ATG5 Expression Predicts Poor Prognosis and Promotes EMT in Cervical Carcinoma. Frontiers in Cell and Developmental Biology, 9, Article 839706.
https://doi.org/10.3389/fcell.2021.839706 |
[58] | Thompson, J.C., Hwang, W.T., Davis, C., et al. (2020) Gene Sig-natures of Tumor Inflammation and Epithelial-to-Mesenchymal Transition (EMT) Predict Responses to Immune Check-point Blockade in Lung Cancer with High Accuracy. Lung Cancer, 139, 1-8. https://doi.org/10.1016/j.lungcan.2019.10.012 |
[59] | Zhang, P.-F., Wang, F., Wu, J., et al. (2019) LncRNA SNHG3 Induces EMT and Sorafenib Resistance by Modulating the miR-128/CD151 Pathway in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 2788-2794.
https://doi.org/10.1002/jcp.27095 |
[60] | Lou, Y., Diao, L., Cuentas, E.R., et al. (2016) Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Mul-tiple Immune Checkpoints in Lung Adenocarcinoma. Clinical Cancer Research, 22, 3630-3642. https://doi.org/10.1158/1078-0432.CCR-15-1434 |
[61] | Zhan, H.X., Zhou, B., Cheng, Y.G., et al. (2017) Crosstalk between Stromal Cells and Cancer Cells in Pancreatic Cancer: New Insights into Stromal Biology. Cancer Letters, 392, 83-93. https://doi.org/10.1016/j.canlet.2017.01.041 |
[62] | Zhang, M., Cao, C., Li, X., Gu, Q., Xu, Y., Zhu, Z., Xu, D., Wei, S., Chen, H., Yang, Y., Gao, H., Yu, L. and Li, J. (2023) Five EMT-Related Genes Signature Predicts Overall Survival and Immune Environment in Microsatellite Instability-High Gastric Cancer. Cancer Medicine, 12, 2075-2088. https://doi.org/10.1002/cam4.4975 |
[63] | Bozkaya, Y., Demirci, N.S., Kurtipek, A., Erdem, G.U., Ozdemir, N.Y. and Zengin, N. (2017) Clinicopathological and Prognostic Characteristics in Patients with AFP-Secreting Gastric Carci-noma. Molecular and Clinical Oncology, 7, 267-274.
https://doi.org/10.3892/mco.2017.1288 |
[64] | Li, J., Qin, S., Xu, J., Guo, W., Xiong, J., Bai, Y., Sun, G., Yang, Y., Wang, L., Xu, N., Cheng, Y., Wang, Z., Zheng, L., Tao, M., Zhu, X., Ji, D., Liu, X. and Yu, H. (2013) Apatinib for Chemotherapy-Refractory Advanced Metastatic Gastric Cancer: Results from a Randomized, Placebo-Controlled, Paral-lel-Arm, Phase II Trial. Journal of Clinical Oncology, 31, 3219-3225. https://doi.org/10.1200/JCO.2013.48.8585 |
[65] | Arakawa, Y., Tamura, M., Aiba, K., Morikawa, K., Aizawa, D., Ikegami, M., Yuda, M. and Nishikawa, K. (2017) Significant Response to Ramucirumab Monotherapy in Chemothera-py-Resistant Recurrent Alpha-Fetoprotein-Producing Gastric Cancer: A Case Report. Oncology Letters, 14, 3039-3042. https://doi.org/10.3892/ol.2017.6514 |