|
Optoelectronics 2024
窄线宽光纤激光腔外倍频532 nm研究进展
|
Abstract:
窄线宽532 nm在高反金属材料加工、荧光检测、紫外波段和中红外波段激光的产生等领域均有广泛的应用。近红外波段1064 nm光纤激光腔外倍频产生的532 nm具有噪声低、效率高,光束质量好和功率稳定性好等优点。本文从常见的腔外倍频结构和晶体出发,对四种常见倍频晶体的有效非线性系数、激光损伤阈值进行分析对比;重点总结了窄线宽光纤激光单通双折射晶体、周期性极化晶体产生绿光;角度匹配、温度匹配下外腔谐振倍频产生532 nm激光的研究进展。讨论了腔外倍频中两种结构的特性和应用场景。
The narrow-linewidth of 532 nm is widely utilized in various domains, including high-reflectance metal material processing, fluorescence detection, and the generation of laser in the ultraviolet and mid-infrared spectral ranges. The 532 nm generated through extracavity frequency doubling of a 1064 nm near-infrared fiber laser boasts advantages such as low noise, high efficiency, good beam quality, and stable power. This paper initiates its exploration from common extracavity frequency-doubling structures and crystals, conducting a comparative analysis of the effective nonlinear coefficients and laser damage thresholds of four commonly used frequency-doubling crystals. It places particular emphasis on summarizing the production of green light using narrow-linewidth fiber lasers through single-pass birefringent crystals and periodically poled crystals. The research progress in external cavity resonant frequency doubling for 532 nm laser generation under angle matching and temperature matching is elucidated. The characteristics and application scenarios of the two extracavity frequency-doubling structures are discussed.
[1] | Sakuma, J., Asakawa, Y. and Obara, M. (2004) Generation of 5-W Deep-UV Continuous-Wave Radiation at 266 nm by an External Cavity with a CsLiB6O10 Crystal. Optics Letters, 29, 92-94. https://doi.org/10.1364/OL.29.000092 |
[2] | Mizell, G.J. (1999) 355-nm CW Laser Emission Using a Con-tact-Bonded Crystal Assembly Pumped with a 1-W 808-nm Diode. Laser Material Crystal Growth and Nonlinear Materials and Devices, 3610, 54-56.
https://doi.org/10.1117/12.349219 |
[3] | Li, F.Q., Shi, Z., Li, Y.M., et al. (2011) Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm. Chinese Physics Letters, 28, Article ID: 124205. https://doi.org/10.1088/0256-307X/28/12/124205 |
[4] | Str?ssner, U., Peters, A., Mlynek, J., et al. (1999) Sin-gle-Frequency Continuous-Wave Radiation from 0.77 to 1.73 μM Generated by a Green-Pumped Optical Parametric Oscillator with Periodically Poled LiTaO3. Optics Letters, 24, 1602-1604. https://doi.org/10.1364/OL.24.001602 |
[5] | Engler, S., Ramsayer, R. and Poprawe, R. (2011) Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers. Physics Procedia, 12, 339-346. https://doi.org/10.1016/j.phpro.2011.03.142 |
[6] | Zhao, S., Wei, H., Zhu, M., et al. (2016) Green Laser Interferometric Metrology System with Sub-Nanometer Periodic Nonlinearity. Applied Optics, 55, 3006-3011. https://doi.org/10.1364/AO.55.003006 |
[7] | Pricking, S., Dold, E.M., Kaiser, E., et al. (2020) 2 KW CW Laser in the Green Wavelength Regime for Copper Welding. In: Clarkson, W.A. and Shori, R.K., Eds., Solid State Lasers XXIX: Technology and Devices, SPIE, San Francisco, 56. https://doi.org/10.1117/12.2546224 |
[8] | Yin, Q., Lu, H., Su, J., et al. (2016) High Power Single-Frequency and Frequency-Doubled Laser with Active Compensation for the Thermal Lens Effect of Terbium Gallium Garnet Crystal. Optics Letters, 41, 2033-2036.
https://doi.org/10.1364/OL.41.002033 |
[9] | Chen, C., Wu, Y., Jiang, A., et al. (1989) New Nonlinear-Optical Crystal: LiB3O5. Journal of the Optical Society of America B, 6, 616-621. https://doi.org/10.1364/JOSAB.6.000616 |
[10] | Ukachi, T., Lane, R.J., Bosenberg, W.R., et al. (1990) Measurements of Noncritically Phase-Matched Second-Harmonic Generation in a LiB3O5 Crystal. Applied Physics Letters, 57, 980-982.
https://doi.org/10.1063/1.104275 |
[11] | Jarrett, S.M., Shellikeri, G.P. and Varela, O. (2010) A 200 MW, CW, 355 nm Laser Based on DPSS Side Pumped, Internally Frequency Tripled Technology. Solid State Lasers XIX: Technology and Devices, 7578, 193-200.
https://doi.org/10.1117/12.854939 |
[12] | Chuangtian, C., Bochang, W., Aidong, J., et al. (1985) A New-Type Ultraviolet SHG Crystal——β-BaB2O4. Science in China Series B-Chemistry, Biological, Agricultural, Medical & Earth Sciences, 28, 235-243. |
[13] | Masuda, H., Kimura, K., Eguchi, N., et al. (2001) All-Solid-State, Continuous-Wave, 195 nm Light Generation in β-BaB2O4. Advanced Solid-State Lasers (2001), Paper WA6. Optica Publishing Group, Washington DC, WA6.
https://doi.org/10.1364/ASSL.2001.WA6 |
[14] | Boyd, G.D., Miller, R.C., Nassau, K., et al. (1964) LiNbO3: An Efficient Phase Matchable Nonlinear Optical Material. Applied Physics Letters, 5, 234-236. https://doi.org/10.1063/1.1723604 |
[15] | Kim, Y.S. and Smith, R.T. (1969) Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals. Journal of Applied Physics, 40, 4637-4641. https://doi.org/10.1063/1.1657244 |
[16] | Shukla, M.K., Kumar, S. and Das, R. (2015) Single-Pass Multi-Watt Second-Harmonic-Generation in Congruent and Stoichiometric LiTaO3. IEEE Photonics Technology Letters, 27, 1379-1382.
https://doi.org/10.1109/LPT.2015.2421643 |
[17] | Gapontsev, V., Avdokhin, A., Kadwani, P., et al. (2014) SM Green Fiber Laser Operating in CW and QCW Regimes and Producing over 550W of Average Output Power. SPIE LASE, San Francisco, 8964, Article ID: 896407.
https://doi.org/10.1117/12.2058733 |
[18] | Ahmadi, P., Creeden, D., Aschaffenburg, D., et al. (2020) Generating KW Laser Light at 532 nm via Second Harmonic Generation of a High Power Yb-Doped Fiber Amplifier. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, SPIE, San Francisco, 40.
https://doi.org/10.1117/12.2546377 |
[19] | Su, M., You, Y., Quan, Z., et al. (2021) 321 W High-Efficiency Continuous-Wave Green Laser Produced by Single-Pass Frequency Doubling of Narrow-Linewidth Fiber Laser. Applied Optics, 60, Article No. 3836.
https://doi.org/10.1364/AO.422514 |
[20] | 苏梦琪, 尤阳, 全昭, 等. 高效率单通倍频实现610 W连续波单模绿光输出[J]. 中国激光, 2021, 48(13): 213-216. |
[21] | Chang-Seok, K. and Kang, J.U. (2001) Second Harmonic Generation of Polarization Maintaining Yb-Doped Fiber Laser Using Periodically-Poled Lithium Niobate. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Diego, 12-13 November 2001, 58-59. |
[22] | Shirakawa, A., Hiwada, K., Hasegawa, S., et al. (2005) All-Fiber Linearly-Polarized Yb-Doped Fiber Laser Yielding 2.2-W Green Second Harmonics. 2005 Pacific Rim Conference on Lasers & Electro-Optics, Tokyo, 11-14 July 2005, 410-411. |
[23] | Samanta, G.K., Kumar, S.C., Mathew, M., et al. (2008) High-Power, Continuous-Wave, Second-Harmonic Generation at 532 nm in Periodically Poled KTiOPO4. Optics Letters, 33, 2955-2957. https://doi.org/10.1364/OL.33.002955 |
[24] | Sinha, S., Hum, D.S., Urbanek, K.E., et al. (2008) Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal. Journal of Lightwave Technology, 26, 3866-3871. https://doi.org/10.1109/JLT.2008.928396 |
[25] | Samanta, G.K., Kumar, S.C. and Ebrahim-Zadeh, M. (2009) Stable, 9.6 W, Continuous-Wave, Single-Frequency, Fiber-Based Green Source at 532 nm. Optics Letters, 34, 1561-1563. https://doi.org/10.1364/OL.34.001561 |
[26] | An, H.B., Su, B.H., Niu, L.H., et al. (2012) Green Generation by Single-Pass Frequency-Doubling in a Periodically Poled MgO:LiNbO3 at Room Temperature. Advanced Materials Research, 622-623, 1258-1261.
https://doi.org/10.4028/www.scientific.net/AMR.622-623.1258 |
[27] | 焦梦丽, 吕新杰, 刘驰, 等. 周期极化钽酸锂倍频窄谱线全光纤连续激光放大器特性[J]. 中国激光, 2012, 39(3): 30-34. |
[28] | Samanta, G.K., Chaitanya, K.S., Devi, K., et al. (2012) High-Power, Continuous-Wave Ti:Sapphire Laser Pumped by Fiber-Laser Green Source at 532 nm. Optics and Lasers in Engineering, 50, 215-219.
https://doi.org/10.1016/j.optlaseng.2011.09.001 |
[29] | 郝丽云, 苏岑, 漆云凤, 等. 基于PPMgO:LN晶体的连续波全光纤激光器倍频特性[J]. 中国激光, 2013, 40(6): 76-81. |
[30] | Lai, R., Hsu, C.S., Hsu, C.W., et al. (2019) Single Pass 7 Watts Continuous Wave 532 nm Generation by Focusing Optimized Second Harmonic Generation in MgO:PPLN. In: Schunemann, P.G. and Schepler, K.L., Eds., Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII, SPIE, San Francisco, 4.
https://doi.org/10.1117/12.2510795 |
[31] | Zeng, X., Cui, S., Qian, J., et al. (2020) 10 W Low-Noise Green Laser Generation by the Single-Pass Frequency Doubling of a Single-Frequency Fiber Amplifier. Laser Physics, 30, Article ID: 075001.
https://doi.org/10.1088/1555-6611/ab908a |
[32] | Dixneuf, C., Guiraud, G., Ye, H., et al. (2021) Robust 17 W Single-Pass Second-Harmonic-Generation at 532 nm and Relative-Intensity-Noise Investigation. Optics Letters, 46, 408-411. https://doi.org/10.1364/OL.415532 |
[33] | Avdokhin, A.V., Gapontsev, V.P. and Grapov, Y.S. (2012) 170W Continuous-Wave Single-Frequency Single-Mode Green Fiber Laser. Fiber Lasers IX: Technology, Systems, and Applications, 8237, 19-20. |
[34] | Meier, T., Willke, B. and Danzmann, K. (2010) Continuous-Wave Sin-gle-Frequency 532 nm Laser Source Emitting 130 W into the Fundamental Transversal Mode. Optics Letters, 35, 3742-3744. https://doi.org/10.1364/OL.35.003742 |
[35] | 许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7W连续单频绿光技术研究[J]. 中国激光, 2016, 43(11): 64-68. |
[36] | Cui, S., Zhang, L., Jiang, H., et al. (2017) 33 W Continuous-Wave Single-Frequency Green Laser by Frequency Doubling of a Single-Mode YDFA. Chinese Optics Letters, 15, Article ID: 041402.
https://doi.org/10.3788/COL201715.041402 |
[37] | Zeng, X., Cui, S., Cheng, X., et al. (2020) Resonant Frequency Doubling of Phase-Modulation-Generated Few-Frequency Fiber Laser. Optics Letters, 45, 4944-4947. https://doi.org/10.1364/OL.401348 |
[38] | Sudmeyer, T., Imai, Y., Masuda, H., et al. (2008) Efficient 2nd and 4th Harmonic Generation of a Single-Frequency, Continuous-Wave Fiber Amplifier. Optics Express, 16, 1546-1551. https://doi.org/10.1364/OE.16.001546 |
[39] | Chen, H.Z., Liu, X.P., Wang, X.Q., et al. (2018) 30 W, Sub-KHz Frequency-Locked Laser at 532 nm. Optics Express, 26, 33756-33763. https://doi.org/10.1364/OE.26.033756 |
[40] | Wang, X.K., Zhou, Z.Y., Li, M.D., et al. (2022) Low-Noise and High-Power Second Harmonic Generation of 532 nm Laser for Trapping Ultracold Atoms. Review of Scientific In-struments, 93, Article ID: 123002.
https://doi.org/10.1063/5.0117561 |