As urbanization continues to
grow, urban climate issues such as urban heat island effect have emerged. The
“implementation gap” refers to the significant difference between the number of
effective methods available to tackle these problems and the few cities where
they have been implemented to some extent. Contrary to most literature, our
hypothesis is that this gap is due to the research not being structured in a
way that enables effective decision-making. Therefore, we propose an expanded
concept of urban climate maps that includes all scales of the city and stages
of urban development as a solution. Four case studies at different scales are
briefly analyzed to reinforce this point and provide a clearer idea of the
immense opportunity for cities to develop these climate maps.
References
[1]
Birkmann, J., Garschagen, M., Kraas, F., & Quang, N. (2010). Adaptive Urban Governance: New Challenges for the Second Generation of Urban Adaptation Strategies to Climate Change. Sustainability Science, 5, 185-206. https://doi.org/10.1007/s11625-010-0111-3
[2]
Bonamente, E., Rossi, F., Coccia, V., Pisello, A. L., Nicolini, A., Castellani, B., Santamouris, M. et al. (2013). An Energy-Balanced Analytic Model for Urban Heat Canyons: Comparison with Experimental Data. Advances in Building Energy Research, 7, 222-234. https://doi.org/10.1080/17512549.2013.865561
[3]
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landscape and Urban Planning, 97, 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
[4]
Coccolo, S., Pearlmutter, D., & Kaempf, J. (2018). Thermal Comfort Maps to Estimate the Impact of Urban Greening on the Outdoor Human Comfort. Urban Forestry & Urban Greening, 35, 91-105. https://doi.org/10.1016/j.ufug.2018.08.007
[5]
Degirmenci, K., Desouza, K. C., Fieuw, W., Watson, R. T., & Yigitcanlar, T. (2021). Understanding Policy and Technology Responses in Mitigating Urban Heat Islands: A Literature Review and Directions for Future Research. Sustainable Cities and Society, 70, Article 102873. https://doi.org/10.1016/j.scs.2021.102873
[6]
Fan, H., & Sailor, D. J. (2005). Modeling the Impacts of Anthropogenic Heating on the Urban Climate of Philadelphia: A Comparison of Implementations in Two PBL Schemes. Atmospheric Environment, 39, 73-84. https://doi.org/10.1016/j.atmosenv.2004.09.031
[7]
Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects. Renewable and Sustainable Energy Reviews, 25, 749-758. https://doi.org/10.1016/j.rser.2013.05.057
[8]
Gilbert, H., Mandel, B. H., & Levinson, R. (2016). Keeping California Cool: Recent Cool Community Developments. Energy and Buildings, 114, 20-26. https://doi.org/10.1016/j.enbuild.2015.06.023
[9]
He, B. J., Wang, J., Liu, H., & Ulpiani, G. (2021). Localized Synergies Between Heat Waves and Urban Heat Islands: Implications on Human Thermal Comfort and Urban Heat Management. Environmental Research, 193, Article 110584. https://doi.org/10.1016/j.envres.2020.110584
[10]
Hebbert, M. (2014). Climatology for City Planning in Historical Perspective. Urban Climate, 10, 204-215. https://doi.org/10.1016/j.uclim.2014.07.001
[11]
Hsieh, C. M., & Huang, H. C. (2016). Mitigating Urban Heat Islands: A Method to Identify Potential Wind Corridor for Cooling and Ventilation. Computers, Environment and Urban Systems, 57, 130-143. https://doi.org/10.1016/j.compenvurbsys.2016.02.005
[12]
Kandya, A., & Mohan, M. (2018). Mitigating the Urban Heat Island Effect through Building Envelope Modifications. Energy and Buildings, 164, 266-277. https://doi.org/10.1016/j.enbuild.2018.01.014
[13]
Kleerekoper, L., Van Esch, M., & Salcedo, T. B. (2012). How to Make a City Climate-Proof, Addressing the Urban Heat Island Effect. Resources, Conservation and Recycling, 64, 30-38. https://doi.org/10.1016/j.resconrec.2011.06.004
[14]
Kyriakodis, G. E., & Santamouris, M. (2018). Using Reflective Pavements to Mitigate Urban Heat Island in Warm Climates-Results from a Large Scale Urban Mitigation Project. Urban Climate, 24, 326-339. https://doi.org/10.1016/j.uclim.2017.02.002
[15]
Lee, H., & Mayer, H. (2018). Maximum Extent of Human Heat Stress Reduction on Building Areas Due to Urban Greening. Urban Forestry & Urban Greening, 32, 154-167. https://doi.org/10.1016/j.ufug.2018.04.010
[16]
Lee, S. H., & Baik, J. J. (2010). Statistical and Dynamical Characteristics of the Urban Heat Island Intensity in Seoul. Theoretical and Applied Climatology, 100, 227-237. https://doi.org/10.1007/s00704-009-0247-1
[17]
Levermore, G. P. (2018). The Increasing Trend of the Urban Heat Island Intensity. Urban Climate, 24, 360-368. https://doi.org/10.1016/j.uclim.2017.02.004
[18]
Li, X., Zhou, W., & Ouyang, Z. (2013). Relationship Between Land Surface Temperature and Spatial Pattern of Greenspace: What Are the Effects of Spatial Resolution? Landscape and Urban Planning, 114, 1-8. https://doi.org/10.1016/j.landurbplan.2013.02.005
[19]
Lontorfos, V., Efthymiou, C., & Santamouris, M. (2018). On the Time Varying Mitigation Performance of Reflective Geoengineering Technologies in Cities. Renewable Energy, 115, 926-930. https://doi.org/10.1016/j.renene.2017.09.033
[20]
Luo, Z., & Asproudi, C. (2015). Subsurface Urban Heat Island and Its Effects on Horizontal Ground-Source Heat Pump Potential under Climate Change. Applied Thermal Engineering, 90, 530-537. https://doi.org/10.1016/j.applthermaleng.2015.07.025
[21]
Makar, P. A., Gravel, S., Chirkov, V., Strawbridge, K. B., Froude, F., Arnold, J., & Brook, J. (2006). Heat Flux, Urban Properties, and Regional Weather. Atmospheric Environment, 40, 2750-2766. https://doi.org/10.1016/j.atmosenv.2005.11.061
[22]
Mekala, G. D., Jones, R. N., & MacDonald, D. H. (2015). Valuing the Benefits of Creek Rehabilitation: Building a Business Case for Public Investments in Urban Green Infrastructure. Environmental Management, 55, 1354-1365. https://doi.org/10.1007/s00267-015-0471-7
[23]
Morakinyo, T. E., Lau, K. K. L., Ren, C., & Ng, E. (2018). Performance of Hong Kong’s Common Trees Species for Outdoor Temperature Regulation, Thermal Comfort and Energy Saving. Building and Environment, 137, 157-170. https://doi.org/10.1016/j.buildenv.2018.04.012
[24]
Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting Urban Climate Change: Adaptation Measures and Their Effect on Thermal Comfort. Urban Climate, 115, 243-257. https://doi.org/10.1007/s00704-013-0890-4
[25]
Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes. Landscape and Urban Planning, 134, 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018
[26]
Parsaee, M., Joybari, M. M., Mirzaei, P. A., & Haghighat, F. (2019). Urban Heat Island, Urban Climate Maps and Urban Development Policies and Action Plans. Environmental Technology & Innovation, 14, Article 100341. https://doi.org/10.1016/j.eti.2019.100341
[27]
Qaid, A., Lamit, H. B., Ossen, D. R., & Shahminan, R. N. R. (2016). Urban Heat Island and Thermal Comfort Conditions at Micro-Climate Scale in a Tropical Planned City. Energy and Buildings, 133, 577-595. https://doi.org/10.1016/j.enbuild.2016.10.006
[28]
Rajagopalan, P., Lim, K. C., & Jamei, E. (2014). Urban Heat Island and Wind Flow Characteristics of a Tropical City. Solar Energy, 107, 159-170. https://doi.org/10.1016/j.solener.2014.05.042
[29]
Razzaghmanesh, M., Beecham, S., & Salem, T. (2016). The Role of Green Roofs in Mitigating Urban Heat Island Effects in the Metropolitan Area of Adelaide, South Australia. Urban Forestry & Urban Greening, 15, 89-102. https://doi.org/10.1016/j.ufug.2015.11.013
[30]
Ren, C., Ng, E. Y., & Katzschner, L. (2011). Urban Climatic Map Studies: A Review. International Journal of Climatology, 31, 2213-2233. https://doi.org/10.1002/joc.2237
[31]
Rizwan, A. M., Dennis, L. Y. C., & Chunho, L. I. U. (2008). A Review on the Generation Determination and Mitigation of Urban Heat Island. Journal of Environmental Sciences, 20, 120-128. https://doi.org/10.1016/S1001-0742(08)60019-4
[32]
Runhaar, H., Wilk, B., Persson, Å., Uittenbroek, C., & Wamsler, C. (2018). Mainstreaming Climate Adaptation: Taking Stock about “What Works” from Empirical Research Worldwide. Regional Environmental Change, 18, 1201-1210. https://doi.org/10.1007/s10113-017-1259-5
[33]
Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings—A Review. Energy and Buildings, 98, 119-124. https://doi.org/10.1016/j.enbuild.2014.09.052
[34]
Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., Prasad, D., & Synnefa, A. (2017). Passive and Active Cooling for the Outdoor Built Environment—Analysis and Assessment of the Cooling Potential of Mitigation Technologies Using Performance Data from 220 Large Scale Projects. Solar Energy, 154, 14-33. https://doi.org/10.1016/j.solener.2016.12.006
[35]
Santamouris, M., Haddad, S., Saliari, M., Vasilakopoulou, K., Synnefa, A. et al. (2018). On the Energy Impact of Urban Heat Island in Sydney: Climate and Energy Potential of Mitigation Technologies. Energy and Buildings, 166, 154-164. https://doi.org/10.1016/j.enbuild.2018.02.007
[36]
Sharma, A., Conry, P., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., & Chen, F. (2016). Green and Cool Roofs to Mitigate Urban Heat Island Effects in the Chicago Metropolitan Area: Evaluation with A Regional Climate Model. Environmental Research Letters, 11, Article 064004. https://doi.org/10.1088/1748-9326/11/6/064004
[37]
Taleghani, M., Crank, P. J., Mohegh, A., Sailor, D. J., & Ban-Weiss, G. A. (2019). The Impact of Heat Mitigation Strategies on the Energy Balance of a Neighborhood in Los Angeles. Solar Energy, 177, 604-611. https://doi.org/10.1016/j.solener.2018.11.041
[38]
Tan, Z., Lau, K. K. L., & Ng, E. (2016). Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy and Buildings, 114, 265-274. https://doi.org/10.1016/j.enbuild.2015.06.031
[39]
Toparlar, Y., Blocken, B., Maiheu, B., & Van, Heijst, G. J. F. (2017). A Review on the CFD Analysis of Urban Microclimate. Renewable and Sustainable Energy Reviews, 80, 1613-1640. https://doi.org/10.1016/j.rser.2017.05.248
[40]
Touchaei, A. G., Hosseini, M., & Akbari, H. (2016). Energy Savings Potentials of Commercial Buildings by Urban Heat Island Reduction Strategies in Montreal. (Canada). Energy and Buildings, 110, 41-48. https://doi.org/10.1016/j.enbuild.2015.10.018
[41]
Unger, J. (2004). Intra-Urban Relationship between Surface Geometry and Urban Heat Island: Review and New Approach. Climate Research, 27, 253-264. https://doi.org/10.3354/cr027253
[42]
Vahmani, P., Sun, F., Hall, A., & Ban-Weiss, G. (2016). Investigating the Climate Impacts of Urbanization and the Potential for Cool Roofs to Counter Future Climate Change in Southern California. Environmental Research Letters, 11, Article 124027. https://doi.org/10.1088/1748-9326/11/12/124027
[43]
Villanueva-Solis, J. (2017). Urban Heat Island Mitigation and Urban Planning: The Case of the Mexicali, BC Mexico. American Journal of Climate Change, 6, 22-39. https://doi.org/10.4236/ajcc.2017.61002
[44]
Wang, C., Wang, Z. H., Kaloush, K. E., & Shacat, J. (2021). Perceptions of Urban Heat Island Mitigation and Implementation Strategies: Survey and Gap Analysis. Sustainable Cities and Society, 66, Article 102687. https://doi.org/10.1016/j.scs.2020.102687
[45]
Wang, R., Peethambaran, J., & Chen, D. (2018). Lidar Point Clouds to 3-D Urban Models: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 606-627. https://doi.org/10.1109/JSTARS.2017.2781132
[46]
Wang, Y., & Akbari, H. (2016). Analysis of Urban Heat Island Phenomenon and Mitigation Solutions Evaluation for Montreal. Sustainable Cities and Society, 26, 438-446. https://doi.org/10.1016/j.scs.2016.04.015
[47]
Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the Effects of Urban Heat Island Mitigation Strategies for Toronto, Canada. Energy and Buildings, 114, 2-19. https://doi.org/10.1016/j.enbuild.2015.06.046
[48]
Whiteoak, K., & Saigar, J. (2019). Estimating the Economic Benefits of Urban Heat Island Mitigation—Economic Analysis. Cooperative Research Centre for Water Sensitive Cities.
[49]
Yang, J., Pyrgou, A., Chong, A., Santamouris, M., Kolokotsa, D., & Lee, S. E. (2018). Green and Cool Roofs’ Urban Heat Island Mitigation Potential in Tropical Climate. Solar Energy, 173, 597-609. https://doi.org/10.1016/j.solener.2018.08.006
[50]
Zhang, L., Zhan, Q., & Lan, Y. (2018). Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Building and Environment, 130, 27-39. https://doi.org/10.1016/j.buildenv.2017.12.014
[51]
Zhang, Y., Gu, Z., & Yu, C. W. (2020). Impact Factors on Airflow and Pollutant Dispersion in Urban Street Canyons and Comprehensive Simulations: A Review. Current Pollution Reports, 6, 425-439. https://doi.org/10.1007/s40726-020-00166-0
[52]
Zhao, Q., Sailor, D. J., & Wentz, E. A. (2018). Impact of Tree Locations and Arrangements on Outdoor Microclimates and Human Thermal Comfort in an Urban Residential Environment. Urban Forestry & Urban Greening, 32, 81-91. https://doi.org/10.1016/j.ufug.2018.03.022