全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机器学习在老年轻度认知障碍识别中的研究进展
Advances in Machine Learning for Mild Cognitive Impairment Recognition in the Elderly

DOI: 10.12677/AP.2024.143139, PP. 108-114

Keywords: 老年轻度认知障碍,机器学习,老年人
Mild Cognitive Impairment in the Elderly
, Machine Learning, The Elderly

Full-Text   Cite this paper   Add to My Lib

Abstract:

轻度认知障碍(MCI)作为痴呆的前临床阶段,被广泛认为是痴呆防治重要领域。随着我国人口老龄化速度加快,老年人口MCI的患病率也逐年上升。近年来,机器学习因其强大的数据处理和挖掘能力逐渐被应用到痴呆早期筛查中。本文从机器学习在MCI方面的研究现状进行介绍,对机器学习算法在老年轻度障碍中的数据采集、特征选择、研究优势以及研究进程等方面进行综合评述,进一步增加研究学者对机器学习在老年轻度认知障碍中的关注并总结现阶段研究局限,对未来研究做出展望。
Mild cognitive impairment (MCI), as a preclinical stage of dementia, is widely recognized as an im-portant area of dementia prevention and treatment. With the accelerated rate of population aging in China, the prevalence of MCI in the elderly population has been increasing year by year. In recent years, machine learning has been gradually applied to dementia early screening due to its powerful data processing and mining capabilities. This paper introduces the current research status of ma-chine learning in MCI, provides a comprehensive review of the data collection, feature selection, re-search advantages, and research process of machine learning algorithms in elderly mild impair-ment, further increases the attention of research scholars to machine learning in elderly mild cog-nitive impairment and summarizes the limitations of the current stage of the study, and makes an outlook of future research.

References

[1]  郭书含(2020). 基于机器学习算法鉴别轻度认知障碍. 硕士学位论文, 北京: 中国科学院大学.
[2]  贾芷莹, 董旻晔, 施贞夙, 金春林, 李国红(2019). 基于机器学习的轻度认知功能障碍筛查研究. 上海交通大学学报: 医学版, 39(8), 908-913.
[3]  王荣, 陈帅, 赵彩丽, 李梓盟, 崔靖, 王晓聪, 刘龙(2023). 多基因风险评分与机器学习建模策略下轻度认知障碍发展为阿尔茨海默病的预后研究. 中华疾病控制杂志, 27(6), 684-690.
[4]  Abd Rahman, R., Omar, K., Noah, S. A. M., Danuri, M. S. N. M., & Al-Garadi, M. A. (2020). Application of Machine Learning Methods in Mental Health Detection: A Systematic Review. IEEE Access, 8, 183952-183964.
https://doi.org/10.1109/ACCESS.2020.3029154
[5]  Ayari, S., Abellard, A., Carayol, M., Guedj, é., & Gavarry, O. (2023). A Systematic Review of Exercise Modalities That Reduce Pro-Inflammatory Cytokines in Humans and Animals’ Models with Mild Cognitive Impairment or Dementia. Experimental Gerontology, 175, Article 112141.
https://doi.org/10.1016/j.exger.2023.112141
[6]  Brodaty, H., Heffernan, M., Kochan, N. A., Draper, B., Trollor, J. N., & Sachdev, P. S. (2016). Incidence of MCI and Dementia over Six Years in an Australian Population Sample. Alz-heimer’s & Dementia, 12, 581.
https://doi.org/10.1016/j.jalz.2016.06.1140
[7]  Casagrande, M., Marselli, G., Agostini, F., Forte, G., Favieri, F., & Guarino, A. (2022). The Complex Burden of Determining Prevalence Rates of Mild Cognitive Impairment: A Systematic Review. Frontiers in Psychiatry, 13, Article 960648.
https://doi.org/10.3389/fpsyt.2022.960648
[8]  Chandler, C., Diaz-Asper, C., Turner, R. S., Reynolds, B., & Elvev?g, B. (2023). An Explainable Machine Learning Model of Cognitive Decline Derived from Speech. Alzheimer’s & Dementia (Amsterdam, Netherlands), 15, e12516.
https://doi.org/10.1002/dad2.12516
[9]  Chang, C. H., Lin, C. H., & Lane, H. Y. (2021). Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 2761.
https://doi.org/10.3390/ijms22052761
[10]  Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Camp-bell, J. P. (2020). Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science & Technology, 9, 14.
[11]  Di, X., Shi, R., Diguiseppi, C., Eby, D. W., & Morandi, A. J. G. (2021). Using Naturalistic Driv-ing Data to Predict Mild Cognitive Impairment and Dementia: Preliminary Findings from the Longitudinal Research on Ag-ing Drivers (LongROAD) Study. Geriatrics, 62, Article 45.
https://doi.org/10.3390/geriatrics6020045
[12]  Goldman, J. G., & Sieg, E. (2020). Cognitive Impairment and Dementia in Parkinson Disease. Clinics in Geriatric Medicine, 36, 365-377.
https://doi.org/10.1016/j.cger.2020.01.001
[13]  Jain, R., Aggarwal, A., & Kumar, V. (2021). A Review of Deep Learning-Based Disease Detection in Alzheimer’s Patients. In H. D. Jude (Ed.), Handbook of Decision Support Sys-tems for Neurological Disorders (pp. 1-19). Academic Press.
https://doi.org/10.1016/B978-0-12-822271-3.00004-9
[14]  Jiang, Y., Wang, P., Wen, J., Wang, J., Li, H., & Biswal, B. B. (2022). Hippocampus-Based Static Functional Connectivity Mapping within White Matter in Mild Cognitive Impair-ment. Brain Structure and Function, 227, 2285-2297.
https://doi.org/10.1007/s00429-022-02521-x
[15]  Jo, T., Nho, K., & Saykin, A. J. (2019). Deep Learning in Alz-heimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neu-roscience, 11, Article 220.
https://doi.org/10.3389/fnagi.2019.00220
[16]  Jones, J. D., Rivas, R., Luna, K., Ryczek, C. A., & Thomas, K. R. (2023). Subjective Cognitive Complaints Are Important in PD-MCI Criteria: Associations with CSF Markers and Cognitive Decline. Parkinsonism & Related Disorders, 106, Article 105221.
https://doi.org/10.1016/j.parkreldis.2022.11.013
[17]  Jongsiriyanyong, S., & Limpawattana, P. (2018). Mild Cognitive Impairment in Clinical Practice: A Review Article. American Journal of Alzheimer’s Disease & Other Dementias, 33, 500-507.
https://doi.org/10.1177/1533317518791401
[18]  Mishra, P. (2023). Explainability for Ensemble Supervised Models. In Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python (pp. 119-206). Springer.
https://doi.org/10.1007/978-1-4842-9029-3_4
[19]  Movahed, R. A., & Rezaeian, M. (2022). Au-tomatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features. Computational and Mathematical Methods in Medicine, 2022, Article ID: 2014001.
https://doi.org/10.1155/2022/2014001
[20]  Qarni, T., & Salardini, A. (2019). A Multifactor Approach to Mild Cogni-tive Impairment. Seminars in Neurology, 39, 179-187.
https://doi.org/10.1055/s-0039-1678585
[21]  Rahim, N., El-Sappagh, S., Ali. S., Muhammad, K., Del Ser, J., & Abuhmed, T. (2023). Prediction of Alzheimer’s Progression Based on Multimodal Deep-Learning-Based Fusion and Visual Explainability of Time-Series Data. Information Fusion, 92, 363-388.
https://doi.org/10.1016/j.inffus.2022.11.028
[22]  Sakurai, R., Bartha, R., & Montero-Odasso, M. (2019). Entorhinal Cortex Volume Is Associated with Dual-Task Gait Cost among Older Adults with MCI: Results from the Gait and Brain Study. The Journals of Gerontology: Series A, 74, 698-704.
https://doi.org/10.1093/gerona/gly084
[23]  Sherman, D. S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The Efficacy of Cognitive Intervention in Mild Cognitive Impairment (MCI): A Meta-Analysis of Outcomes on Neuropsychological Measures. Neuropsychology Review, 27, 440-484.
https://doi.org/10.1007/s11065-017-9363-3
[24]  Su, R., Liu, X., & Wei, L. (2020). MinE-RFE: Determine the Optimal Subset from RFE by Minimizing the Subset-Accuracy-Defined Energy. Briefings in Bioinformatics, 21, 687-698.
https://doi.org/10.1093/bib/bbz021
[25]  Tan, M. S., Cheah, P. L., Chin, A. V., Looi, L. M., & Chang, S. W. (2021). A Review on Omics-Based Biomarkers Discovery for Alzheimer’s Disease from the Bioinformatics Perspectives: Statistical Approach vs Machine Learning Approach. Computers in Biology and Medicine, 139, Article 104947.
https://doi.org/10.1016/j.compbiomed.2021.104947
[26]  van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., & Iwatsubo, T. (2023). Lecanemab in Early Alzheimer’s Disease. The New England Journal of Medicine, 388, 9-21.
https://doi.org/10.1056/NEJMoa2212948
[27]  Wang, Y., Sun, Y., Wang, Y., Jia, S., Qiao, Y., Zhou, Z., & Peng, D. (2023). Identification of Novel Diagnostic Panel for Mild Cognitive Impairment and Alzheimer’s Disease: Findings Based on Urine Proteomics and Machine Learning. Alzheimer’s Research & Therapy, 15, Article No. 191.
https://doi.org/10.1186/s13195-023-01324-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133