|
高原缺氧环境在女性生殖中的研究进展
|
Abstract:
随着经济的发展,选择去高原地区工作和旅行的女性逐渐增加。高海拔地区的低氧环境可能影响生理适应和女性生殖健康。本研究探讨了高原缺氧环境对女性的影响和适应机制,旨在提供更好的医疗和生育支持。
With the development of economy, more and more women choose to work and travel in high alti-tude areas. The low oxygen environment in high altitude areas may affect physiological adaptation and female reproductive health. This study will explore the effects and adaptive mechanisms of hy-poxic environment on women, with the aim of providing better medical and reproductive support.
[1] | Bigham, A.W. (2016) Genetics of Human Origin and Evolution: High-Altitude Adaptations. Current Opinion in Genet-ics & Development, 41, 8-13. https://doi.org/10.1016/j.gde.2016.06.018 |
[2] | Doutreleau, S. (2021) Réponses Physiologiques et Pathologiques à L’Altitude. Revue des Maladies Respiratoires, 38, 1013-1024. https://doi.org/10.1016/j.rmr.2020.12.007 |
[3] | Zhang, X., Zhang, Z., Ye, R., et al. (2022) Prevalence of Hyperten-sion and Its Relationship with Altitude in Highland Areas: A Systematic Review and Meta-Analysis. Hypertension Re-search, 45, 1225-1239.
https://doi.org/10.1038/s41440-022-00955-8 |
[4] | Koufakis, T., Karras, S.N., Mustafa, O.G., et al. (2019) The Ef-fects of High Altitude on Glucose Homeostasis, Metabolic Control, and Other Diabetes-Related Parameters: From Ani-mal Studies to Real Life. High Altitude Medicine & Biology, 20, 1-11. https://doi.org/10.1089/ham.2018.0076 |
[5] | Moore, L.G. (2021) HYPOXIA AND REPRODUCTIVE HEALTH: Reproductive Challenges at High Altitude: Fertility, Pregnancy and Neonatal Well-Being. Reproduction (Cambridge, England), 161, F81-F90.
https://doi.org/10.1530/REP-20-0349 |
[6] | Zhang, B., Wu, W., Shi, G., et al. (2021) Maternal Exposure to Low-to-Medium Altitude and Birth Outcomes: Evidence from a Population-Based Study in Chinese Newborns. Journal of Developmental Origins of Health and Disease, 12, 443-451. https://doi.org/10.1017/S204017442000063X |
[7] | Moore, L.G. (2017) Measuring High-Altitude Adaptation. Journal of Applied Physiology (1985), 123, 1371-1385.
https://doi.org/10.1152/japplphysiol.00321.2017 |
[8] | He, Y., Guo, Y., Zheng, W., et al. (2023) Polygenic Adapta-tion Leads to a Higher Reproductive Fitness of Native Tibetans at High Altitude. Current Biology, 33, 4037-4051.E5. https://doi.org/10.1016/j.cub.2023.08.021 |
[9] | Shaw, S., Ghosh, D., Kumar, U., et al. (2018) Impact of High Alti-tude on Key Determinants of Female Reproductive Health: A Review. International Journal of Biometeorology, 62, 2045-2055.
https://doi.org/10.1007/s00484-018-1609-0 |
[10] | Abelson, A.E. (1976) Altitude and Fertility. Human Biology, 48, 83-91. |
[11] | Parraguez, V.H., Urquieta, B., Pérez, L., et al. (2013) Fertility in a High-Altitude Environment Is Compro-mised by Luteal Dysfunction: The Relative Roles of Hypoxia and Oxidative Stress. Reproductive Biology and Endocri-nology: RB&E, 11, Article No. 24. https://doi.org/10.1186/1477-7827-11-24 |
[12] | Ding, M., Lu, Y., Huang, X., Xing, C., Hou, S., Wang, D., Zhang, Y., Wang, W., Zhang, C., Zhang, M., Meng, F., Liu, K., Liu, G., Zhao, J. and Song, L. (2022) Acute Hypoxia Induced Dysregulation of Clock-Controlled Ovary Functions. Frontiers in Physiology, 13, Ar-ticle ID: 1024038. https://doi.org/10.3389/fphys.2022.1024038 |
[13] | Braga, D.P.A.F., Setti, A.S., De Cássia, S., Figueira, R., et al. (2012) Patient Selection Criteria for Blastocyst Transfers in Extended Embryo Culture Programs. Journal of Assisted Reproduction and Genetics, 29, 1357-1362.
https://doi.org/10.1007/s10815-012-9875-y |
[14] | Ietta, F., Wu, Y., Romagnoli, R., et al. (2007) Oxygen Regulation of Macrophage Migration Inhibitory Factor in Human Placenta. American Journal of Physiology. Endocrinology and Metabolism, 292, E272-E280.
https://doi.org/10.1152/ajpendo.00086.2006 |
[15] | Yamada, H., Kato, E.H., Morikawa, M., et al. (2003) Decreased Serum Levels of Macrophage Migration Inhibition Factor in Miscarriages with Normal Chromosome Karyotype. Human Reproduction, 18, 616-620.
https://doi.org/10.1093/humrep/deg147 |
[16] | Verratti, V., Ietta, F., Paulesu, L., et al. (2017) Physiological Effects of High-Altitude Trekking on Gonadal, Thyroid Hormones and Macrophage Migration Inhibitory Factor (MIF) Responses in Young Lowlander Women. Physiological Reports, 5, e13400. https://doi.org/10.14814/phy2.13400 |
[17] | Shaw, S., Gidugu, H., Bhaumik, G., et al. (2021) Anti-Mullerian Hormone and Macrophage Migration Inhibitory Factor De-termine the Reproductive Health of Ladakhi Women Residing at 3,500?M. High Altitude Medicine & Biology, 22, 317-326. https://doi.org/10.1089/ham.2021.0024 |
[18] | Palomba, S., Piltonen, T.T. and Giudice, L.C. (2021) Endometrial Function in Women with Polycystic Ovary Syndrome: A Comprehensive Review. Human Reproduction Update, 27, 584-618.
https://doi.org/10.1093/humupd/dmaa051 |
[19] | Li, W., Wu, M. and Tsai, S. (2021) HYPOXIA and REPRODUCTIVE HEALTH: The Role of Hypoxia in the Development and Progression of Endometriosis. Reproduc-tion (Cambridge, England), 161, F19-F31.
https://doi.org/10.1530/REP-20-0267 |
[20] | Grant, I.D., Giussani, D.A. and Aiken, C.E. (2022) Fetal Growth and Spontaneous Preterm Birth in High-Altitude Pregnancy: A Systematic Review, Meta-Analysis, and Meta-Regression. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 157, 221-229.
https://doi.org/10.1002/ijgo.13779 |
[21] | Yang, L., Helbich-Poschacher, V., Cao, C., et al. (2020) Maternal Altitude and Risk of Low Birthweight: A Systematic Review and Meta-Analyses. Placenta, 101, 124-131. https://doi.org/10.1016/j.placenta.2020.09.010 |
[22] | Parraguez, V.H., Mamani, S., Cofré, E., et al. (2015) Disturb-ances in Maternal Steroidogenesis and Appearance of Intrauterine Growth Retardation at High-Altitude Environments Are Established from Early Pregnancy. Effects of Treatment with Antioxidant Vitamins. PLOS ONE, 10, E140902. https://doi.org/10.1371/journal.pone.0140902 |
[23] | Hernández-Vásquez, A., Bartra Reátegui, A. and Var-gas-Fernández, R. (2023) Altitude and Its Association with Low Birth Weight among Children of 151,873 Peruvian Women: A Pooled Analysis of a Nationally Representative Survey. International Journal of Environmental Research and Public Health, 20, Article No. 1411.
https://doi.org/10.3390/ijerph20021411 |
[24] | Moore, L.G. (2022) How Hypoxia Slows Fetal Growth: Insights from High Altitude. Pediatric Research, 91, 17-18.
https://doi.org/10.1038/s41390-021-01784-0 |
[25] | Bigham, A.W., Julian, C.G., Wilson, M.J., et al. (2014) Maternal PRKAA1 and EDNRA Genotypes Are Associated with Birth Weight, and PRKAA1 with Uterine Artery Diameter and Metabolic Homeostasis at High Altitude. Physiological Genomics, 46, 687-697. https://doi.org/10.1152/physiolgenomics.00063.2014 |
[26] | Zhang, P., Ke, J., Li, Y., et al. (2019) Long-Term Ex-posure to High Altitude Hypoxia during Pregnancy Increases Fetal Heart Susceptibility to Ischemia/Reperfusion Injury and Cardiac Dysfunction. International Journal of Cardiology, 274, 7-15. https://doi.org/10.1016/j.ijcard.2018.07.046 |
[27] | Grant, I.D., Giussani, D.A. and Aiken, C.E. (2021) Blood Pres-sure and Hypertensive Disorders of Pregnancy at High Altitude: A Systematic Review and Meta-Analysis. American Journal of Obstetrics & Gynecology MFM, 3, Article ID: 100400. https://doi.org/10.1016/j.ajogmf.2021.100400 |
[28] | Bailey, B., Euser, A.G., Bol, K.A., Julian, C.G. and Moore, L.G. (2022) High-Altitude Residence Alters Blood-Pressure Course and Increases Hypertensive Disorders of Pregnancy. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 1264-1271. https://doi.org/10.1080/14767058.2020.1745181 |
[29] | Ahmed, S.I.Y., Ibrahim, M.E. and Khalil, E.A.G. (2017) High Altitude and Pre-Eclampsia: Adaptation or Protection. Medical Hypotheses, 104, 128-132. https://doi.org/10.1016/j.mehy.2017.05.007 |
[30] | Mauchart, P., Vass, R.A., Nagy, B., et al. (2023) Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Current Issues in Molecular Bi-ology, 45, 1272-1286.
https://doi.org/10.3390/cimb45020083 |
[31] | Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J. and Li, F. (2021) Oxidative Stress in Oocyte Aging and Female Reproduction. Journal of Cellular Physiology, 236, 7966-7983. https://doi.org/10.1002/jcp.30468 |
[32] | Dosek, A., Ohno, H., Acs, Z., Taylor, A.W. and Radak, Z. (2007) High Al-titude and Oxidative Stress. Respiratory Physiology & Neurobiology, 158, 128-131. https://doi.org/10.1016/j.resp.2007.03.013 |
[33] | Joanny, P., Steinberg, J., Robach, P., Richalet, J.P., Gortan, C., Gardette, B. and Jammes, Y. (2001) Operation Everest III (Comex’97): The Effect of Simulated Sever Hypobaric Hy-poxia on Lipid Peroxidation and Antioxidant Defence Systems in Human Blood at Rest and after Maximal Exercise. Re-suscitation, 49, 307-314.
https://doi.org/10.1016/S0300-9572(00)00373-7 |
[34] | Mrakic-Sposta, S., Gussoni, M., Dellanoce, C., et al. (2021) Effects of Acute and Sub-Acute Hypobaric Hypoxia on Oxidative Stress: A Field Study in the Alps. European Journal of Applied Physiology, 121, 297-306.
https://doi.org/10.1007/s00421-020-04527-x |
[35] | Haas, J., Bassil, R., Samara, N., et al. (2020) GnRH Agonist and HCG (Dual Trigger) Versus HCG Trigger for Final Follicular Maturation: A Double-Blinded, Randomized Controlled Study. Human Reproduction (Oxford, England), 35, 1648-1654. https://doi.org/10.1093/humrep/deaa107 |
[36] | Almog, B., Eldar, I., Barkan, G., et al. (2014) Embryo Quality in Controlled Ovarian Stimulation for in Vitro Fertilization in Young Poor Responders. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 30, 657-659. https://doi.org/10.3109/09513590.2014.920003 |
[37] | Li, Q., Lin, K., Sun, H., et al. (2016) Mitochondrial Haplog-roup M9a1a1c1b Is Associated with Hypoxic Adaptation in the Tibetans. Journal of Human Genetics, 61, 1021-1026. https://doi.org/10.1038/jhg.2016.95 |
[38] | Li, Y., Huang, W., Yu, Q., et al. (2016) Lower Mitochondrial DNA Con-tent Relates to High-Altitude Adaptation in Tibetans. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Anal-ysis, 27, 753-757.
https://doi.org/10.3109/19401736.2014.915526 |
[39] | Petousi, N. and Robbins, P.A. (2014) Human Adaptation to the Hypoxia of High Altitude: The Tibetan Paradigm from the Pregenomic to the Postgenomic Era. Journal of Applied Physiology (Bethesda, Md.: 1985), 116, 875-884.
https://doi.org/10.1152/japplphysiol.00605.2013 |
[40] | Xu, X., Huang, X., Qun, L., et al. (2014) Two Functional Loci in the Promoter of EPAS1 Gene Involved in High-Altitude Adaptation of Tibetans. Scientific Reports, 4, Article No. 7465. https://doi.org/10.1038/srep07465 |
[41] | Childebayeva, A., Harman, T., Weinstein, J., et al. (2019) DNA Methylation Changes Are Associated with an Incremental Ascent to High Altitude. Frontiers in Genetics, 10, Article No. 1062. https://doi.org/10.3389/fgene.2019.01062 |
[42] | Lin, Z., Lu, Y., Yu, G., et al. (2023) Genome-Wide DNA Methylation Landscape of Four Chinese Populations and Epigenetic Variation Linked to Tibetan High-Altitude Adapta-tion. Science China Life Sciences, 66, 2354-2369.
https://doi.org/10.1007/s11427-022-2284-8 |