全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚厘米肺结节CT密度测量与鉴别诊断价值
CT Density Measurement and Differential Diagnosis of Sub-Centimeter Pulmonary Nodules

DOI: 10.12677/ACM.2024.143747, PP. 616-623

Keywords: 亚厘米肺结节,重建算法,密度测量,鉴别诊断
Sub-Centimeter Pulmonary Nodules
, Reconstruction Algorithm, Density Measurement, Differential Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

在临床医疗实践与研究领域,对直径 ≤ 10 mm的亚厘米肺结节定性诊断始终是一个挑战性的焦点。影像学鉴别诊断主要依据结节类型及形态学特征,结节密度精准测量对结节类型的分类及良恶性评判具有重要意义。本文就密度测量的重要性及影响因素、CT图像重建算法对亚厘米肺结节的分辨能力、以及良恶性鉴别诊断作用进行综述。另外,简要讨论CT重建算法对肺结节AI密度检测、结节分类、良恶性评判的影响。
In the field of clinical practice and research, the qualitative diagnosis of sub-centimeter pulmonary nodules with diameter ≤ 10 mm is always a challenging focus. The imaging differential diagnosis of nodules is mainly based on the type and morphological characteristics of nodules. Accurate meas-urement of nodule density is of great significance for the classification of nodules and the evaluation of benign and malignant nodules. This article reviews the importance and influencing factors of density measurement, the resolution ability of CT image reconstruction algorithms in sub-centimeter pulmonary nodules, and the role of benign and malignant differential diagnosis. In addition, the effects of CT reconstruction algorithms on AI density detection, nodule classification, and benign and malignant evaluation of pulmonary nodules were briefly discussed.

References

[1]  刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
[2]  王宁, 刘硕, 杨雷, 等. 2018全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 87-97.
[3]  Mountain, C.F. (1997) Revisions in the International System for Staging Lung Cancer. Chest, 111, 1710-1717.
https://doi.org/10.1378/chest.111.6.1710
[4]  胡德荣. 肺癌防治应前移关键是早发现[N]. 大众卫生报, 2007-05-08(001).
[5]  望云, 范丽, 周莹, 等. 上海地区低剂量CT筛查肺癌基线初步报告[J]. 中华健康管理学杂志, 2018, 12(1): 51-54.
[6]  Henschke, C.I., Mccauley, D.I., Yankelevitz, D.F., et al. (1999) Early Lung Cancer Ac-tion Project: Overall Design and Findings from Baseline Screening. The Lancet, 354, 99-105.
https://doi.org/10.1016/S0140-6736(99)06093-6
[7]  Swensen, S.J., Jett, J.R., Hartman, T.E., et al. (2003) Lung Cancer Screening with CT: Mayo Clinic Experience. Radiology, 226, 756-761.
https://doi.org/10.1148/radiol.2263020036
[8]  Erasmus, J.J., Mcadams, H.P., Patz Jr., E.F., et al. (1998) Thoracic FDG PET: State of the Art. RadioGraphics, 18, 5-20.
https://doi.org/10.1148/radiographics.18.1.9460106
[9]  Higashi, K., Ueda, Y., Seki, H., et al. (1998) Fluo-rine-18-FDG PET Imaging Is Negative in Bronchioloalveolar Lung Carcinoma. Journal of Nuclear Medicine, 39, 1016-1020.
[10]  Herder, G.J., Golding, R.P., Hoekstra, O.S., et al. (2004) The Performance of 18F-Fluorodeoxyglucose Positron Emission Tomography in Small Solitary Pulmonary Nodules. European Journal of Nuclear Medicine and Molecular Imaging, 31, 1231-1236.
https://doi.org/10.1007/s00259-004-1552-7
[11]  Ost, D., Fein, A.M. and Feinsilver, S.H. (2003) The Solitary Pulmonary Nodule. New England Journal of Medicine, 348, 2535-2542.
https://doi.org/10.1056/NEJMcp012290
[12]  Macmahon, H., Naidich, D.P., Goo, J.M., et al. (2017) Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology, 284, 228-243.
https://doi.org/10.1148/radiol.2017161659
[13]  中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版) [J]. 中华结核和呼吸杂志, 2018, 41(10): 763-771.
[14]  张晓菊. 《肺结节诊治中国专家共识(2018版)》解读[J]. 中华实用诊断与治疗杂志, 2019, 33(1): 1-3.
[15]  周清华, 范亚光, 王颖, 等. 中国肺部结节分类、诊断与治疗指南(2016年版) [J]. 中国肺癌杂志, 2016, 19(12): 793-798.
[16]  Naidich, D.P., Bankier, A.A., Macmahon, H., et al. (2013) Recommendations for the Management of Subsolid Pulmonary Nodules Detected at CT: A Statement from the Fleischner Society. Radiology, 266, 304-317.
https://doi.org/10.1148/radiol.12120628
[17]  Henschke, C.I., Yankelevitz, D.F., Mirtcheva, R., et al. (2002) CT Screening for Lung Cancer: Frequency and Significance of Part-Solid and Nonsolid Nodules. American Journal of Roentgenology, 178, 1053-1057.
https://doi.org/10.2214/ajr.178.5.1781053
[18]  Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[19]  Swensen, S.J., Jett, J.R., Hartman, T.E., et al. (2005) CT Screening for Lung Cancer: Five-Year Prospective Experience. Radiology, 235, 259-265.
https://doi.org/10.1148/radiol.2351041662
[20]  Henschke, C.I. (2000) Early Lung Cancer Action Project: Overall Design and Findings from Baseline Screening. Cancer, 89, 2474-2482.
https://doi.org/10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2
[21]  Benjamin, M.S., Drucker, E.A., Mcloud, T.C., et al. (2003) Small Pulmonary Nodules: Detection at Chest CT and Outcome. Radiology, 226, 489-493.
https://doi.org/10.1148/radiol.2262010556
[22]  Siegelman, S.S., Khouri, N.F., Leo, F.P., et al. (1986) Solitary Pulmonary Nodules: CT Assessment. Radiology, 160, 307-312.
https://doi.org/10.1148/radiology.160.2.3726105
[23]  刘强, 娄豪, 陈德一, 等. 肺肿瘤性磨玻璃结节平均CT值测量相关技术的影响因素研究[J]. 重庆医学, 2021, 50(20): 3482-3486.
[24]  於婧婧, 方金忠, 张文奇, 等. CT各征象对肺磨玻璃结节浸润性及浸润程度的鉴别价值[J]. 全科医学临床与教育, 2023, 21(12): 1092-1095.
[25]  於婧婧, 方金忠, 张文奇, 等. CT各征象对肺磨玻璃结节浸润性及浸润程度的鉴别价值与教育[J]. 全科医学临床, 2023, 21(12): 1092-1095.
[26]  Senosain, M.F. and Massion, P.P. (2020) Intratumor Heterogeneity in Early Lung Adenocarcinoma. Frontiers in Oncology, 10, Article 349.
https://doi.org/10.3389/fonc.2020.00349
[27]  黄定品, 傅钢泽, 蔡蒙婷, 等. 亚厘米纯磨玻璃密度结节肺腺癌的CT特征对其浸润性的预测价值[J]. 温州医科大学学报, 2019, 49(11): 837-841.
[28]  时宝勇. 直径 ≤ 1 cm肺内磨玻璃结节良、恶性的CT征象分析[J]. 现代医用影像学, 2022, 31(11): 2027-2031.
[29]  代平, 刘勇, 何其舟, 等. 囊腔类肺癌MSCT征象与病理类型的相关性分析[J]. 中国医学计算机成像杂志, 2018, 24(6): 474-478.
[30]  Wahidi, M.M., Govert, J.A., Goudar, R.K., et al. (2007) Evidence for the Treatment of Patients with Pulmonary Nodules: When Is It Lung Cancer? ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest, 132, 94s-107s.
https://doi.org/10.1378/chest.07-1352
[31]  中华医学会放射学分会心胸学组. 肺亚实性结节影像处理专家共识[J]. 中华放射学杂志, 2015, 49(4): 254-258.
[32]  Eguchi, T., Bains, S., Lee, M.C., et al. (2017) Impact of Increasing Age on Cause-Specific Mortality and Morbidity in Patients with Stage I Non-Small-Cell Lung Cancer: A Competing Risks Analysis. Journal of Clinical Oncology, 35, 281-290.
https://doi.org/10.1200/JCO.2016.69.0834
[33]  张新华. 不同病理类型肺部磨玻璃结节的CT诊断[J]. 临床医药文献电子杂志, 2019, 6(15): 152, 165.
[34]  Kinsey, C.M., Estepar, R.S., Zhao, Y., et al. (2014) Invasive Adenocar-cinoma of the Lung Is Associated with the Upper Lung Regions. Lung Cancer, 84, 145-150.
https://doi.org/10.1016/j.lungcan.2014.02.002
[35]  Winer-Muram, H.T., Jennings, S.G., Tarver, R.D., et al. (2002) Volumetric Growth Rate of Stage I Lung Cancer Prior to Treatment: Serial CT Scanning. Radiology, 223, 798-805.
https://doi.org/10.1148/radiol.2233011026
[36]  赵俊松, 陈克敏. 肺结节诊断和应对策略研究进展[J]. 诊断学理论与实践, 2018, 17(5): 593-600.
[37]  宓嘉辉, 王少东, 李晓, 等. 亚厘米肺腺癌临床特征及预后分析[J]. 中国肺癌杂志, 2019, 22(8): 500-506.
[38]  郭洪生, 杨德宏, 李媛媛, 等. 孤立性肺结节诊断和处理策略研究进展[J]. 天津医药, 2016, 44(5): 653-656.
[39]  田彬彬, 成俊芬. 孤立性肺结节的诊断进展及处理策略[J]. 中国继续医学教育, 2018, 10(15): 121-123.
[40]  兰永树, 黄文龙, 朱德强, 等. 影响CT值测量的因素及对策的探讨[J]. 实用放射学杂志, 2006, 22(3): 352-355.
[41]  Li, F., Aoyama, M., Shiraishi, J., et al. (2004) Radiologists’ Performance for Differentiating Benign from Malignant Lung Nodules on High-Resolution CT Using Computer-Estimated Likelihood of Malignancy. American Journal of Roentgenology, 183, 1209-1215.
https://doi.org/10.2214/ajr.183.5.1831209
[42]  Labaki, W.W., Martinez, C.H., Martinez, F.J., et al. (2017) The Role of Chest Computed Tomography in the Evaluation and Management of the Patient with Chronic Obstructive Pul-monary Disease. American Journal of Respiratory and Critical Care Medicine, 196, 1372-1379.
https://doi.org/10.1164/rccm.201703-0451PP
[43]  Ikeda, K., Awai, K., Mori, T., et al. (2007) Differential Diagno-sis of Ground-Glass Opacity Nodules: CT Number Analysis by Three-Dimensional Computerized Quantification. Chest, 132, 984-990.
https://doi.org/10.1378/chest.07-0793
[44]  Tamura, M., Shimizu, Y., Yamamoto, T., et al. (2014) Predictive Value of One-Dimensional Mean Computed Tomography Value of Ground-Glass Opacity on High-Resolution Images for the Possibility of Future Change. Journal of Thoracic Oncology, 9, 469-472.
https://doi.org/10.1097/JTO.0000000000000117
[45]  Chae, H.D., Park, C.M., Park, S.J., et al. (2014) Computer-ized Texture Analysis of Persistent Part-Solid Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Inva-sive Pulmonary Adenocarcinomas. Radiology, 273, 285-293.
https://doi.org/10.1148/radiol.14132187
[46]  Ravenel, J.G., Leue, W.M., Nietert, P.J., et al. (2008) Pulmonary Nodule Volume: Effects of Reconstruction Parameters on Automated Measurements—A Phantom Study. Radiology, 247, 400-408.
https://doi.org/10.1148/radiol.2472070868
[47]  Denzler, S., Vuong, D., Bogowicz, M., et al. (2021) Impact of CT Convolution Kernel on Robustness of Radiomic Features for Different Lung Diseases and Tissue Types. The British Journal of Radiology, 94, Article ID: 20200947.
https://doi.org/10.1259/bjr.20200947
[48]  陈澜菁, 李艳, 程勇, 等. MSCT重建参数对肺结节定量测量的影响[J]. 放射学实践, 2021, 36(3): 403-407.
[49]  Mayo, J.R., Webb, W.R., Gould, R., et al. (1987) High-Resolution CT of the Lungs: An Optimal Approach. Radiology, 163, 507-510.
https://doi.org/10.1148/radiology.163.2.3562834
[50]  He, L., Huang, Y., Ma, Z., et al. (2016) Effects of Con-trast-Enhancement, Reconstruction Slice Thickness and Convolution Kernel on the Diagnostic Performance of Radiomics Signature in Solitary Pulmonary Nodule. Scientific Reports, 6, Article No. 34921.
https://doi.org/10.1038/srep34921
[51]  刘海法. 胸部CT联合不同重建算法对肺结节测量及显示影响的模体研究[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2022.
[52]  程燕南, 李贤军, 李新雨, 等. CT重建算法和显示窗设置影响肺实性结节检出和测量的研究[J]. 西安交通大学学报(医学版), 2022, 43(3): 476-482.
[53]  Hwang, J., Chung, M.J., Bae, Y., et al. (2010) Computer-Aided Detection of Lung Nodules: Influence of the Image Reconstruction Kernel for Computer-Aided Detection Performance. Journal of Computer Assisted Tomography, 34, 31-34.
https://doi.org/10.1097/RCT.0b013e3181b5c630
[54]  Armato III, S.G., Giger, M.L. and Macmahon, H. (2001) Automated Detection of Lung Nodules in CT Scans: Preliminary Results. Medical Physics, 28, 1552-1561.
https://doi.org/10.1118/1.1387272
[55]  Boedeker, K.L., Mcnitt-Gray, M.F., Rogers, S.R., et al. (2004) Emphysema: Effect of Reconstruction Algorithm on CT Imaging Measures. Radiology, 232, 295-301.
https://doi.org/10.1148/radiol.2321030383
[56]  王冠华, 燕俊竹, 张林. 人工智能技术对肺癌早期不同密度肺结节的诊断能力探究[J]. 影像研究与医学应用, 2020, 4(14): 145-146.
[57]  Zhao, W., Zhang, W., Sun, Y., et al. (2019) Convolution Kernel and Iterative Reconstruction Affect the Diagnostic Performance of Radiomics and Deep Learning in Lung Adenocarcinoma Pathological Subtypes. Thoracic Cancer, 10, 1893-1903.
https://doi.org/10.1111/1759-7714.13161
[58]  贾永军, 张喜荣, 杨创勃. 重建算法和迭代权重对机器深度学习预测肺结节恶性程度准确性的影响[C]//中国中西医结合学会医学影像专业委员会(Chinese Imaging Society of Integrative Medicine). 中国中西医结合学会医学影像专业委员会第十七次全国学术大会暨甘肃省中西医结合学会医学影像专业委员会第六届学术年会资料汇编. 2019: 142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133