全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

促皮肤伤口愈合的生物材料研究进展
Research Progress of Biomaterials for Promoting Skin Wound Healing

DOI: 10.12677/ACM.2024.143742, PP. 581-586

Keywords: 生物材料,伤口敷料,伤口愈合
Biomaterials
, Wound Dressing, Wound Healing

Full-Text   Cite this paper   Add to My Lib

Abstract:

皮肤伤口愈合是一个复杂的多阶段生物学过程,严重的皮肤损伤或患者全身健康状况不良等情况会显著降低皮肤的愈合能力,容易形成慢性创面。传统的伤口敷料功能单一,无法促进伤口愈合。近年来,生物材料由于其强大的功能,受到了广泛关注和研究。某些生物材料本身具有生物黏附、抗菌、促血管生成等作用,还可以根据需要调整生物材料的理化性质以及负载的生物活性物质,这些特点对于设计伤口敷料是有利的。目前已经研发出了许多基于生物材料的新型伤口敷料。本文将对促皮肤伤口愈合的生物材料研究进展进行综述。
Skin wound healing is a complex multi-stage biological process. Severe skin injury or poor general health of patients can significantly reduce the skin healing ability, and it is easy to form chronic wounds. Traditional wound dressings have a single function and cannot promote wound healing. In recent years, biomaterials have received extensive attention and research due to their powerful functions. Some biomaterials themselves have the effects of biological adhesion, antibacterial, and angiogenesis, and their physical and chemical properties and loaded bioactive substances can be adjusted according to needs. These characteristics are beneficial for the design of wound dressings. Many new biomaterial-based wound dressings have been developed. This article reviews the re-search progress of biomaterials for skin wound healing.

References

[1]  Mathes, S., Ruffner, H. and Graf-Hausner, U. (2014) The Use of Skin Models in Drug Development. Advanced Drug Delivery Reviews, 69-70, 81-102.
https://doi.org/10.1016/j.addr.2013.12.006
[2]  Eming, S., Martin, P. and Tom-ic-Canic, M. (2014) Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Science Translational Medicine, 6, 265sr6.
https://doi.org/10.1126/scitranslmed.3009337
[3]  GBD 2019 Viewpoint Collaborators (2019) Five Insights from the Global Burden of Disease Study 2019. The Lancet, 396, 1135-1159.
[4]  Gomes, A., Teixeira, C., Ferraz, R., Prudêncio, C. and Gomes, P.J.M. (2017) Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries. Molecules, 22, Article 1743.
https://doi.org/10.3390/molecules22101743
[5]  Farahani, M. and Shafiee, A. (2021) Wound Healing: From Pas-sive to Smart Dressings. Advanced Healthcare Materials, 10, e2100477.
https://doi.org/10.1002/adhm.202100477
[6]  Rodrigues, M., Kosaric, N., Bonham, C. and Gurtner, G. (2019) Wound Healing: A Cellular Perspective. Physiological Reviews, 99, 665-706.
https://doi.org/10.1152/physrev.00067.2017
[7]  Choi, S.J., Lee, J.H., Lee, Y.H., Hwang, D.Y. and Kim, H.D. (2011) Synthesis and Properties of Polyurethane-Urea-Based Liquid Bandage Materials. Journal of Applied Polymer Science, 121, 3516-3524.
https://doi.org/10.1002/app.34135
[8]  Devinder, M.T. (2003) Recent Advances in Topical Therapy in Dermatolo-gy. Indian Journal of Dermatology, 48, 1-11.
[9]  Arthe, R., Arivuoli, D. and Venkatraman, R. (2019) Preparation and Characterization of Bioactive Silk Fibroin/Paramylon Blend Films for Chronic Wound Healing. International Journal of Biological Macromolecules, 154, 1324-1331.
https://doi.org/10.1016/j.ijbiomac.2019.11.010
[10]  Lopes, S.A., Veiga, I.G., Bierhalz, A.C.K., Pires, A.L.R. and Moraes, ?.M. (2018) Physicochemical Properties and Release Behavior of Indomethacin-Loaded Polysaccharide Membranes. International Journal of Polymeric Materials and Polymeric Bio-materials, 68, 956-964.
https://doi.org/10.1080/00914037.2018.1525540
[11]  Zahid, A., Ahmed, R., Raza Ur Rehman, S., Augustine, R., Tariq, M. and Hasan, A. (2019) Nitric Oxide Releasing Chitosan-Poly (Vinyl Alcohol) Hy-drogel Promotes Angiogenesis in Chick Embryo Model. International Journal of Biological Macromolecules, 136, 901-910.
https://doi.org/10.1016/j.ijbiomac.2019.06.136
[12]  Basu, S., Chakraborty, A., Alkiswani, A., Shamiya, Y. and Paul, A. (2022) Investigation of a 2D WS2 Nanosheet-Reinforced Tough DNA Hydrogel as a Biomedical Scaf-fold: Preparation and in Vitro Characterization. Materials Advances, 3, 946-952.
https://doi.org/10.1039/D1MA00897H
[13]  Chen, X., Zhang, M., Chen, S., Wang, X., Tian, Z., Chen, Y., Xu, P., Zhang, L., Zhang, L. and Zhang, L.J.C.T. (2017) Peptide-Modified Chitosan Hydrogels Accelerate Skin Wound Healing by Promoting Fibroblast Proliferation. Migration, and Secretion, 26, 1331-1340.
https://doi.org/10.1177/0963689717721216
[14]  Guo, S., Ren, Y., Chang, R., He, Y., Zhang, D., Guan, F. and Yao, M.J.A.A.M. (2022) Injectable Self-Healing Adhesive Chitosan Hydrogel with Antioxidative, Antibacterial, and Hemostatic Activities for Rapid Hemostasis and Skin Wound Healing. ACS Applied Materials & Interfaces, 14, 34455-34469.
https://doi.org/10.1021/acsami.2c08870
[15]  Bertsch, P., Diba, M., Mooney, D. and Leeuwenburgh, S.J.C.R. (2023) Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 123, 834-873.
https://doi.org/10.1021/acs.chemrev.2c00179
[16]  Tang, A., Li, Y., Yao, Y., Yang, X., Cao, Z., Nie, H. and Yang, G. (2021) Injectable Keratin Hydrogels as Hemostatic and Wound Dressing Materials. Biomaterials Science, 9, 4169-4177.
https://doi.org/10.1039/D1BM00135C
[17]  Chen, H., Cheng, R., Zhao, X., Zhang, Y., Tam, A., Yan, Y., Shen, H., Zhang, Y.S., Qi, J. and Feng, Y. (2019) An Injectable Self-Healing Coordinative Hydrogel with Antibacte-rial and Angiogenic Properties for Diabetic Skin Wound Repair. NPG Asia Materials, 11, Article No. 3.
https://doi.org/10.1038/s41427-018-0103-9
[18]  Da Silva, L., Reis, R., Correlo, V. and Marques, A. (2019) Hy-drogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169.
https://doi.org/10.1146/annurev-bioeng-060418-052422
[19]  Chen, S., Shi, J., Zhang, M., Chen, Y. and Zhang, L. (2015) Mesenchymal Stem Cell-Laden Anti-Inflammatory Hydrogel Enhances Diabetic Wound Healing. Scientific Re-ports, 5, Article No. 18104.
https://doi.org/10.1038/srep18104
[20]  Lei, Z., Singh, G., Min, Z., Shixuan, C., Xu, K., Pengcheng, X., Xueer, W., Yinghua, C., Lu, Z. and Lin, Z. (2018) Bone Marrow-Derived Mesenchymal Stem Cells Laden Novel Thermo-Sensitive Hydrogel for the Management of Severe Skin Wound Healing. Materials Science Engi-neering, 90, 159-167.
https://doi.org/10.1016/j.msec.2018.04.045
[21]  Wang, W., Lu, K., Yu, C., Huang, Q. and Du, Y. (2019) Nano-Drug Delivery Systems in Wound Treatment and Skin Regeneration. Journal of Nanobiotechnology, 17, Article No. 82.
https://doi.org/10.1186/s12951-019-0514-y
[22]  Masood, N., Ahmed, R., Tariq, M., Muham-mad, Z. and Masoud, S. (2019) Silver Nanoparticle Impregnated Chitosan-PEG Hydrogel Enhances Wound Healing in Diabetes Induced Rabbits. International Journal of Pharmaceutics, 559, 23-26.
https://doi.org/10.1016/j.ijpharm.2019.01.019
[23]  Pormohammad, A., Monych, N., Ghosh, S., Turner, D. and Turner, R. (2021) Nanomaterials in Wound Healing and Infection Control. Antibiotics, 10, Article 473.
https://doi.org/10.3390/antibiotics10050473
[24]  Liu, T., Xiao, B., Xiang, F., Tan, J. and Deng, J. (2020) Ul-trasmall Copper-Based Nanoparticles for Reactive Oxygen Species Scavenging and Alleviation of Inflammation Related Diseases. Nature Communications, 11, Article No. 2788.
https://doi.org/10.1038/s41467-020-16544-7
[25]  Soliman, G.M. (2017) Nanoparticles as Safe and Effective De-livery Systems of Antifungal Agents: Achievements and Challenges. International Journal of Pharmaceutics, 523, 15-32.
https://doi.org/10.1016/j.ijpharm.2017.03.019
[26]  Chereddy, K., Her, C., Comune, M., Moia, C., Lopes, A., Por-porato, P., Vanacker, J., Lam, M., Steinstraesser, L., Sonveaux, P., Zhu, H., Ferreira, L., Vandermeulen, G. and Préat, V. (2014) PLGA Nanoparticles Loaded with Host Defense Peptide LL37 Promote Wound Healing. Journal of Controlled Release, 194, 138-147.
https://doi.org/10.1016/j.jconrel.2014.08.016
[27]  Dave, V., Kushwaha, K., Yadav, R. and Agrawal, U. (2017) Hybrid Nanoparticles for the Topical Delivery of Norfloxacin for the Effective Treatment of Bacterial Infection Produced After Burn. Journal of Microencapsulation, 34, 351-365.
https://doi.org/10.1080/02652048.2017.1337249
[28]  Chen, J., Cheng, D., Li, J., Wang, Y., Guo, J., Chen, Z., Cai, B. and Yang, T. (2013) Influence of Lipid Composition on the Phase Transition Temperature of Liposomes Composed of Both DPPC and HSPC. Drug Development Industrial Pharmacy, 39, 197-204.
https://doi.org/10.3109/03639045.2012.668912
[29]  Xu, H., Chen, P., ZhuGe, D., Zhu, Q., Jin, B., Shen, B., Xiao, J. and Zhao, Y. (2017) Liposomes with Silk Fibroin Hydrogel Core to Stabilize BFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald. Advanced Healthcare Materials, 6, Article ID: 1700344.
https://doi.org/10.1002/adhm.201700344
[30]  Guo, M., Wang, Y., Gao, B. and He, B. (2021) Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management. ACS Nano, 15, 15316-15327.
https://doi.org/10.1021/acsnano.1c06279
[31]  Gurtner, G., Werner, S., Barrandon, Y. and Longaker, M. (2008) Wound Repair and Regeneration. Nature, 453, 314-321.
https://doi.org/10.1038/nature07039
[32]  Kumar, J. and Mandal, B. (2017) Antioxidant Potential of Mulberry and Non-Mulberry Silk Sericin and Its Implications in Biomedicine. Free Radical Biology Medicine, 108, 803-818.
https://doi.org/10.1016/j.freeradbiomed.2017.05.002
[33]  Suarato, G., Bertorelli, R. and Athanassiou, A. (2018) Borrowing from Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Frontiers in Bioengineering Biotechnology, 6, Article 416094.
https://doi.org/10.3389/fbioe.2018.00137
[34]  Klar, A., Güven, S., Biedermann, T., Luginbühl, J., B?t-tcher-Haberzeth, S., Meuli-Simmen, C., Meuli, M., Martin, I., Scherberich, A. and Reichmann, E. (2014) Tis-sue-Engineered Dermo-Epidermal Skin Grafts Prevascularized with Adipose-Derived Cells. Biomaterials, 35, 5065-5078.
https://doi.org/10.1016/j.biomaterials.2014.02.049
[35]  Si, H., Xing, T., Ding, Y., Zhang, H., Yin, R. and Zhang, W. (2019) 3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluron-ic-Acid-Based Hydrogels. Polymers, 11, Article 1584.
https://doi.org/10.3390/polym11101584
[36]  Xw, A., Jq, A., Wz, A., Yp, A., Rong, Y.A., Pw, A., Shuai, L.C., Xta, B. and Bo, C. (2021) 3D-Printed Antioxidant Antibacterial Carboxymethyl Cellulose/ε-Polylysine Hydrogel Pro-moted Skin Wound Repair. International Journal of Biological Macromolecules, 187, 91-104.
https://doi.org/10.1016/j.ijbiomac.2021.07.115
[37]  Osidak, E.O., Kozhukhov, I., Osidak, M.S. and Domogatsky, S.P. (2020) Collagen as Bioink for Bioprinting: A Comprehensive Review. International Journal of Bioprinting, 6, Arti-cle 270.
https://doi.org/10.18063/ijb.v6i3.270

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133