|
EBV重激活的研究进展
|
Abstract:
EB病毒(Epstein-Barr Virus, EBV)是一种在人群中广泛存在的病毒,它在人类生命周期中的某个时刻几乎无一例外地会感染到每个人。EBV通常能在人体B细胞和上皮细胞中建立长期潜伏感染,且在特定条件下可能重新激活。EBV的重激活与多种肿瘤性疾病相关,包括淋巴瘤和胃肠癌等。虽然目前没有官方批准的治疗方法,但已有研究显示某些抗病毒药物和质子泵抑制剂能有效抑制EBV的复制。但对于潜伏感染的治疗效果有限,因此需要更多研究来开发新的治疗策略。
Epstein-Barr Virus (EBV) is a virus that is widely prevalent in the human population, infecting nearly everyone at some point during their lifetime. EBV typically establishes long-term latent in-fections in human B cells and epithelial cells, and can reactivate under certain conditions. Reacti-vation of EBV is associated with various tumorigenic diseases, including lymphomas and gastro-intestinal cancers. Although there are no officially approved treatments to date, studies have shown that certain antiviral drugs and proton pump inhibitors can effectively inhibit EBV replication. However, their effectiveness on latent infections is limited, necessitating further research to develop new therapeutic strategies.
[1] | Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt’s Lym-phoma. The Lancet, 283, 702-703. https://doi.org/10.1016/S0140-6736(64)91524-7 |
[2] | Shannon-Lowe, C. and Rowe, M. (2014) Epstein Barr Virus Entry; Kissing and Conjugation. Current Opinion in Virology, 4, 78-84. https://doi.org/10.1016/j.coviro.2013.12.001 |
[3] | Vetsika, E.K. and Callan, M. (2004) Infectious Mononucleosis and Epstein-Barr Virus. Expert Reviews in Molecular Medicine, 6, 1-16. https://doi.org/10.1017/S1462399404008440 |
[4] | Cesarman, E. (2011) Gammaherpesvirus and Lymphoproliferative Disorders in Immunocompromised Patients. Cancer Letters, 305, 163-174. https://doi.org/10.1016/j.canlet.2011.03.003 |
[5] | Ok, C.Y., Li, L. and Young, K.H. (2015) EBV-Driven B-Cell Lymphoproliferative Disorders: From Biology, Classification and Differential Diagnosis to Clinical Management. Ex-perimental & Molecular Medicine, 47, e132.
https://doi.org/10.1038/emm.2014.82 |
[6] | Thorley-Lawson, D.A., Hawkins, J.B., Tracy, S.I. and Shapiro, M. (2013) The Pathogenesis of Epstein-Barr Virus Persistent Infection. Current Opinion in Virology, 3, 227-232. https://doi.org/10.1016/j.coviro.2013.04.005 |
[7] | Yang, Z., Wang, J., Zhang, Z. and Tang, F. (2019) Epstein-Barr Virus-Encoded Products Promote Circulating Tumor Cell Generation: A Novel Mechanism of Nasopharyngeal Carci-noma Metastasis. OncoTargets and Therapy, 12, 11793-11804. https://doi.org/10.2147/OTT.S235948 |
[8] | Iizasa, H., Nanbo, A., Nishikawa, J., Jinushi, M. and Yoshiyama, H. (2012) Epstein-Barr Virus (EBV)-Associated Gastric Carcinoma. Viruses, 4, 3420-3439. https://doi.org/10.3390/v4123420 |
[9] | Machón, C., Fàbrega-Ferrer, M., Zhou, D., Cuervo, A., Carrascosa, JL., Stuart, D.I., et al. (2019) Atomicstructure of the Epstein-Barr Virus Portal. Nature Communications, 10, Article No. 3891.
https://doi.org/10.1038/s41467-019-11706-8 |
[10] | He, H.P., Luo, M., Cao, Y.L., Lin, Y.X., Zhang, H., Zhang, X., et al. (2020) Structure of Epstein-Barr Virus Tegument Protein Complex BBRF2-BSRF1 Reveals Its Potential Role in Viral Envelopment. Nature Communications, 11, Article No. 5405. https://doi.org/10.1038/s41467-020-19259-x |
[11] | Chen, T., Wang, Y., Xu, Z., Zou, X., Wang, P., Ou, X., et al. (2019) Epstein-Barr Virus Tegument Protein BGLF2 Inhibits NF-κB Activity by Preventing P65 Ser536 Phosphoryla-tion. The FASEB Journal, 33, 10563-10576.
https://doi.org/10.1096/fj.201901196RR |
[12] | Hutt-Fletcher, L.M. (2015) EBV Glycoproteins: Where Are We Now? Future Medicine, 10, 1155-1162.
https://doi.org/10.2217/fvl.15.80 |
[13] | Kirschner, A.N., Sorem, J., Longnecker, R. and Jardetzky, T.S. (2009) Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry. Structure, 17, 223-233.
https://doi.org/10.1016/j.str.2008.12.010 |
[14] | Ohga, S., Nomura, A., Takada, H. and Hara, T. (2002) Immuno-logical Aspects of Epstein-Barr Virus Infection. Critical Reviews in Oncology/Hematology, 44, 203-215. https://doi.org/10.1016/S1040-8428(02)00112-9 |
[15] | Hutt-Fletcher, L.M. and Chesnokova, L.S. (2010) Integrins as Triggers of Epstein-Barr Virus Fusion and Epithelial Cell Infection. Virulence, 1, 395-398. https://doi.org/10.4161/viru.1.5.12546 |
[16] | Inagaki, T., Sato, Y., Ito, J., Takaki, M., Okuno, Y., Yaguchi, M., et al. (2020) Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency during B-Cell Infection. Frontiers in Microbiology, 11, Article 575255. https://doi.org/10.3389/fmicb.2020.575255 |
[17] | Tsurumi, T., Fujita, M. and Kudoh, A. (2005) Latent and Lytic Epstein-Barr Virus Replication Strategies. Reviews in Medical Virology, 15, 3-15. https://doi.org/10.1002/rmv.441 |
[18] | Morscio, J. and Tousseyn, T. (2016) Recent Insights in the Pathogenesis of Post-Transplantation Lymphoproliferative Disorders. World Journal of Transplantation, 6, 505-516. https://doi.org/10.5500/wjt.v6.i3.505 |
[19] | Kempkes, B. and Robertson, E.S. (2015) Epstein-Barr Virus Latency: Current and Future Perspectives. Current Opinion in Virology, 14, 138-144. https://doi.org/10.1016/j.coviro.2015.09.007 |
[20] | Elgui De Oliveira, D., Müller-Coan, B.G. and Pagano, J.S. (2016) Viral Carcinogenesis beyond Malignant Transformation: EBV in the Progression of Human Cancers. Trends in Microbiology, 24, 649-664.
https://doi.org/10.1016/j.tim.2016.03.008 |
[21] | Lupey-Green, L.N., Moquin, S.A., Martin, K.A., McDevitt, S.M., Hulse, M., Caruso, L.B., et al. (2017) PARP1 Restricts Epstein Barr Virus Lytic Reactivation by Binding the BZLF1 Promoter. Virology, 507, 220-230.
https://doi.org/10.1016/j.virol.2017.04.006 |
[22] | Dunmire, S.K., Verghese, P.S. and Balfour, H.H. (2018) Primary Epstein-Barr Virus Infection. Journal of Clinical Virology, 102, 84-92. https://doi.org/10.1016/j.jcv.2018.03.001 |
[23] | Takada, K. (1984) Cross-Linking of Cell Surface Immunoglobulins Induces Epstein-Barr Virus in Burkitt Lymphoma Lines. International Journal of Cancer, 33, 27-32. https://doi.org/10.1002/ijc.2910330106 |
[24] | Kenney, S.C. and Mertz, J.E. (2014) Regulation of the Latent-Lytic Switch in Epstein-Barr Virus. Seminars in Cancer Biology, 26, 60-68. https://doi.org/10.1016/j.semcancer.2014.01.002 |
[25] | Seo, M.D., Park, S.J., Kim, H.J. and Lee, B.J. (2007) Iden-tification of the WW Domain-Interaction Sites in the Unstructured N-Terminal Domain of EBV LMP 2A. FEBS Letters, 581, 65-70.
https://doi.org/10.1016/j.febslet.2006.11.078 |
[26] | Incrocci, R., Hussain, S., Stone, A., Bieging, K., Alt, L.A.C., Fay, M.J., et al. (2015) Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A)-Mediated Changes in Fas Expression and Fas-Dependent Apoptosis: Role of Lyn/Syk Activation. Cellular Immunology, 297, 108-119. https://doi.org/10.1016/j.cellimm.2015.08.001 |
[27] | Ma, Y., Walsh, M.J., Bernhardt, K., Ashbaugh, C.W., Trudeau, S.J., Ashbaugh, I.Y., et al. (2017) CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host Microbe, 21, 580-591.E7.
https://doi.org/10.1016/j.chom.2017.04.005 |
[28] | Murata, T. and Tsurumi, T. (2014) Switching of EBV Cycles between Latent and Lytic States. Reviews in Medical Virology, 24, 142-153. https://doi.org/10.1002/rmv.1780 |
[29] | Hatayama, Y., Hashimoto, Y. and Motokura, T. (2020) Frequent Co-Reactivation of Epstein-Barr Virus in Patients with Cytomegalovirus Viremia under Immunosuppressive Therapy and/or Chemotherapy. Journal of International Medical Research, 48, 1-11. https://doi.org/10.1177/0300060520972880 |
[30] | Parums, D.V. (2021) Editorial: Tocilizumab, a Humanized Therapeutic IL-6 Receptor (IL-6R) Monoclonal Antibody, and Future Combination Therapies for Severe COVID-19. Medical Science Monitor, 27, e933973.
https://doi.org/10.12659/MSM.933973 |
[31] | Venkiteshwaran, A. (2009) Tocilizumab. mAbs, 1, 432-438. https://doi.org/10.4161/mabs.1.5.9497 |
[32] | Nishimoto, N., Yoshizaki, K., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., et al. (2004) Treatment of Rheumatoid Arthritis with Humanized Anti-Interleukin-6 Receptor Antibody: A Multicenter, Double-Blind, Placebo-Controlled Trial. Arthritis & Rheumatology, 50, 1761-1769. https://doi.org/10.1002/art.20303 |
[33] | Boninsegna, S., Storato, S., Riccardi, N., Soprana, M., Oliboni, E., Tamarozzi, F., et al. (2021) Epstein-Barr Virus (EBV) Acute Acalculous Cholecystitis in an Immunocompromised Adult Patient: A Case Report and a Literature Review of a Neglected Clinical Presentation. Journal of Preventive Medicine and Hygiene, 62, E237-E242. |
[34] | Smolen, J.S., Beaulieu, A., Rubbert-Roth, A., Ramos-Remus, C., Rovensky, J., Alecock, E., et al. (2008) Effect of Interleukin-6 Receptor Inhibition with Tocilizumab in Patients with Rheumatoid Arthritis (OPTION Study): A Double-Blind, Placebo-Controlled, Randomised Trial. The Lancet, 371, 987-997.
https://doi.org/10.1016/S0140-6736(08)60453-5 |
[35] | Ramshaw, I.A., Ramsay, A.J., Karupiah, G., Rolph, M.S., Mahalingam, S. and Ruby, J.C. (1997) Cytokines and Immunity to Viral Infections. Immunological Reviews, 159, 119-135. https://doi.org/10.1111/j.1600-065X.1997.tb01011.x |
[36] | Bauer, G. (2001) Simplicity through Com-plexity: Immunoblot with Recombinant Antigens as the New Gold Standard in Epstein-Barr Virus Serology. Clinical Laboratory, 47, 223-230. |
[37] | Straus, S.E., Tosato, G., Armstrong, G., Lawley, T., Preble, O.T., Henle, W., et al. (1985) Persisting Illness and Fatigue in Adults with Evidence of Epstein-Barr Virus Infection. Annals of Internal Med-icine, 102, 7-16.
https://doi.org/10.7326/0003-4819-102-1-7 |
[38] | Stowe, R.P., Pierson, D.L., Feeback, D.L. and Barrett, A.D. (2000) Stress-Induced Reactivation of Epstein-Barr Virus in Astronauts. Neuroimmunomodulation, 8, 51-58. https://doi.org/10.1159/000026453 |
[39] | Schaade, L., Kleines, M. and H?usler, M. (2001) Application of Vi-rus-Specific Immunoglobulin M (IgM), IgG, and IgA Antibody Detection with a Polyantigenic Enzyme-Linked Immunosorbent Assay for Diagnosis of Epstein-Barr Virus Infections in Childhood. Journal of Clinical Microbiology, 39, 3902-3905.
https://doi.org/10.1128/JCM.39.11.3902-3905.2001 |
[40] | Lam, W.K.J., Jiang, P., Chan, K.C.A., Cheng, S.H., Zhang, H., Peng, W., et al. (2018) Sequencing-Based Counting and Size Profiling of Plasma Epstein-Barr Virus DNA Enhance Population Screening of Nasopharyngeal Carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 115, E5115-E5124.
https://doi.org/10.1073/pnas.1804184115 |
[41] | Chan, K.C.A., Woo, J.K.S., King, A., Zee, B.C.Y., Lam, W.K.J., Chan, S.L., et al. (2017) Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. The New England Journal of Medicine, 377, 513-522.
https://doi.org/10.1056/NEJMoa1701717 |
[42] | Pagano, J.S., Whitehurst, C.B. and Andrei, G. (2018) Antiviral Drugs for EBV. Cancers, 10, Article 197.
https://doi.org/10.3390/cancers10060197 |
[43] | Drosu, N.C., Edelman, E.R. and Housman, D.E. (2020) Tenofovir Prodrugs Potently Inhibit Epstein-Barr Virus Lytic DNA Replication by Targeting the Viral DNA Polymerase. Pro-ceedings of the National Academy of Sciences of the United States of America, 117, 12368-12374. https://doi.org/10.1073/pnas.2002392117 |
[44] | Thomé, M.P., Borde, C., Larsen, A.K., Henriques, J.A.P., Lenz, G., Escargueil, A.E., et al. (2019) Dipyridamole as a New Drug to Prevent Epstein-Barr Virus Reactivation. Antiviral Re-search, 172, Article ID: 104615.
https://doi.org/10.1016/j.antiviral.2019.104615 |
[45] | Watanabe, S.M., Ehrlich, L.S., Strickland, M., Li, X., Soloveva, V., Goff, A.J., et al. (2020) Selective Targeting of Virus Replication by Proton Pump Inhibitors. Scientific Reports, 10, Article No. 4003.
https://doi.org/10.1038/s41598-020-60544-y |
[46] | Jafarzadeh, A., Nemati, M., Khorramdelazad, H. and Hassan, Z.M. (2019) Immunomodulatory Properties of Cimetidine: Its Therapeutic Potentials for Treatment of Immune-Related Diseases. International Immunopharmacology, 70, 156-166. https://doi.org/10.1016/j.intimp.2019.02.026 |
[47] | Pantziarka, P., Bouche, G., Meheus, L., Sukhatme, V. and Sukhatme, V.P. (2014) Repurposing Drugs in Oncology (ReDO)—Cimetidine as an Anti-Cancer Agent. Ecancermedicalscience, 8, 485.
https://doi.org/10.3332/ecancer.2014.485 |